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1. Introduction

In many problema of scattering of seismic surface waves (Love waves
and Rayleigh waves) at a laterally discontinucus change in elevation or
in material properties of a stratified elastic medium, we need to express
the displacement fields on either side of the discontinuity in terms of a
complete set of eigenfunctions, proper or improper, associated with the
corresponding elastodynamic operators, Kazi (1976) gave a method to ;btain
the spectral repreaentation of the two-dimensional Love wave operator,
assoclated with the propagation of monochromatic SH waves in a laterally
uniform layered strip or half-space. Explicit spectral representations
were obtained for two-layer models of an infinite strip, overlying another
infinite strip or a half-space, with constant- rigidity and dengity within
each layer. Abu-Safiya (1981) used the method to obtain spectral represen-
tations of the Tove wave operator for three-layer models. Kazi {1978a,1;1979)
and Niazy and Kazl (1980,1982) have successfully used the representations
found in Kazi (1976) in the SH wave diffraction problems for discontinuous

wave guldes,

Mathematically, the eigenvalue problem involved in the spectral repre-

sentation of the Love wave operator for a stratified elastic balf-space is
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a singular Sturm-Liouville problem with discontinuous coefficients and
interface conditions. 'The essential step 1n obtalning the spectral repre-
sentation in Kazi (1976) is to construct a Green function G as a function
of a certain parameter 1 , and to integrate it around a large circle

|A| = R 1o the complex A-plane.

In this repert we set up the eigenvalue problem associated with coupled
seismic (P-S8V) wave propagation in a uniform half-space., We show that the
two components of the displacement fileld satisfy a fourth order ordinary dif-
ferential equation along with appropriate boundary ceonditions, We call the
operator sssociated with the fourth order differential equation the Rayleigh
wave operator. The singular eigenvalue problem encountered here is differen
from that normally encountered since the parameter in the operator occurs
quadratically in the coefficients of the second order and zeroth order terms

as well as in the boundary conditions.

We proceed to construct the Green function for the Rayleigh wave opera-
tor. We find that the Green function for both components of the displacement
field has, in addition to poles, two branch-point singularities. The Green

function 1s, however, not symmetric.

The possibility of using the theory of quadratic bundles developed by
Roach and Sleeman (1977,1979) to examine the possibility of obtaining an
expansion theorem and of using the Green functions obtained in this report
for obtaining spectral representation of the Rayleigh wave operator will be

investigated later,

t
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2. Basic Equations

We confine our attention to the two dimensional problem of Rayleigh
wave propagation in an isotropic elastic hal f-space of density p with
Lame parameters X and yp in the abscnce of body forces. The Cartesian

system of co-ordinates x, = (x,y,z) is chosen so that the positive

i
z-axis 1s dirvcted vertically downward into the medium, the xy-plane coin-
ciding with the upper free surface. The x-axis can be thought of as lying

in the plane of the paper with the y-axis pointing directly out of the

paper.,
The stress — strain relationship for isotropic elaatic materials is

T!‘j - lekk 5!':1 + 2y e[,j (2.1)

wich e,’j being the Cauchy strain tensor :

1
e 3 (3, u + a£ u

- - ..a_
23 3 Y j) 3 Bj z (2.2)

Y, being the dieplacement vector and th being the stress tensor.

Applying (2.1) to the equation of linear momentum in the absence of body

forces {.e. 3, 7 = p“t (dots denoting time differentiation) gives

J ot
{(n + u)ag(a u,) +uyda a3, u = pﬁl (2.3)

h N i)

We now take all stresses and displacements to be independent of the co-

ordinate y by examining harmonic waves with positive real frequency w
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and wave number k , of the form
u, = ug(z) exp {i(wt - kx)} (2.4)

Applying (2.4) to (2.3), and suppressing the explielt dependence on z of

un(z), gives

d2u3 du du1
A+ w{g —— -dk{(§, —+8§ -—) - k2§ ul}
L3 dz? 2! dz 13 dz o
dzllm
+ p == +(pw? ~ yk2)u_ =0 (2.5)
dz2 L

The & = 2 equation f{s assoclated with SH wave propagation, and will not
interest us here, We are concerned with the equations for 2 =1 and

£ = 3, which represent P and SV wave propagation, We have from (2.5)

d2u1 dLI3
{ow? = K2+ 2 luy+u — = 1k (A + p) —

dz? dz

d?u du1 (2.6)
{pw? - ukz}ua + (A + 2p)— =4k (A + p) —

dz? dz

lotroduce now the longitudinal wave velocity o = /lﬁswza— ,» and the

shear wave velocity B = / —gm , and define quantities vﬂz, v-z, g by

8
2 2
2 w2 2,90 2 o IR+ )
Equations (2.6) now read
2
d u, ol ) , du3
dz2 g2 dz
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d?u. . du
3 < |
" 8L V.2 uy = opp? ' (2.8b)
dz? a? dz
Decoupling of uy) and wu3 1is easily achieved by differentiating (2.8a)
twice with respect to z , and then using (2.8b) followed by (2.8a)., We
immediately obtain the following equation for wuy :

2
e e (= oy 2 4 8 v.? - 02p?%a2p82) + v 2y ?ul =0 (2.9)
: uzB u B

The same equation can be obtalned for uy. ‘The coefficient of

d’u
"——P-(p = 1,3) 1is seen, after a little working, to be uuz + uB2 , whence
dz?

the equation for up is finally

2
Lu =0; L% 4 (2+y2y9 4, 2,2 (2.10)
P dztl a 3 dzz UB

We shall call the operator L the Rayleigh wave operator. The p sub-
script will bhe understood from now on to take the values 1,3 only.
3. Boundary Conditions

Together with the fourth order Ravieigh wave operator 1. we must
impoge sulitable boundary conditions. Since the plane z = (0 1s stress

free we must have

T, =14, =0 at z =20 (3.1
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A suitable condition at infinity must also he imposed, namely that

be square integrable :

* 2
% |up(z)| dz < »

Let us now translate conditions (3.1) into conditions on up

derivatives
Tyz = 135 = 0  at
dl.ll
'c'l';-- = ik tigy at z =0
duy
1kA at z = {

dz ( A+ 2 ) s

and its

(3.2)

z =0 yield , from (2.1),(2.2) and (2.4),

(3.3a)

(3.3b)

Substituting for du;/dz , du3/dz from (2.8), and simplifying the resulting

coafficlents of

dzu] (\J 2"'\) 2)
By(uy) : = {2Kk2 8 - vﬁz}ul at z =
dz? (v,2+ k?2)
B
d2u, (v 2-v 2)
By (u3) @ - (2228 v2lug at z =0

dz2 (0824- k2)

By combining (2.8b) with (3.3a), and (2.8a)

d2y du
I )

dz? ol 8 dz

2

ii_.l_il - {“'“.‘? + !‘.Q. j'__g.lll f."_z v ?]

dz o g2 @

with (3.3b), we have

at z =

dU3
—_— at z =0
dz

], uz, we obtain the first pair of boundary conditions

{3.4a)

(3.4b)

(3.5a)

(1.5
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Now differentiating (2.8a) and (2.8b), and using the results of (3.5a),

(3.5b) gives the second palr of boundary conditions

d3u1 (082—0“2) dul
By(uy) ¢+ —— = {2k2 + va2 ~2u;} — atz =0 (3.6a)
dz? (uB2+ k?) dz
d3u, kZv % + 2v *-y “ du
: 3
By(ug) ¢ —- = { —8 a8 at z =0 (3.6b)
dz? UBZ-Zvuz—k2 dz

4. Green's Function Belonging to the Rayleigh Wave Operator

We wish to find Creen's function for the operator L given in (2.10)
subject to elther the pair of boundary conditions By(u;), Bz(u;) or the
pair B;(u3), Bz(u3). The Green's functions corresponding to u; and
u3 will be labelled G;, Gy respectively. The Green's functions

Gp(Z.Q) must satisy the following conditicns

(G1) TIn each of the intervals [0,7) and (g,=), Gp(z,g),

considered as a function of 2z , satisfies the equation
L(Gp) = 0 . (4.1)

(G2) Gp as a function of 2 satisfies the boundary conditions

Bl(up), BZ(“p) and the condition (3.2) 1.e.

d%g, 2k2(u82-u 2y
—€16; =0 at z=0; ¢
dz? vsz + k2

--\382 (4.2a)

n

By (Gy) =
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a3, 4G,
B,(Gy) = - {uu2 - u62 +eg}l— =0 at z=0 (4.2b)
dz?3 dz
- 2
% juj(2)} dz < = (4.2¢)
ar
d203 2k2(uu?_U82)
By(Gy) = ——~ ~eG3 =0 aL z=0; g, = - v 2 (4.3.3)
dz2 W 2 + k2 a
B
d3¢, k?-uB? +2v 4 - vt dG,
By (Gg) = - { L By— =0 at z=0 (4.3b)
dz? v,2 - 2v?2 -k? dz
8 a
o« 2
% [u3(z)| dz < = (4,3¢)
3G 326
(G3) Gp(z,;), —2 s ——;E are continuous at z =
Az 9z

a3 a3
(G4) — G_ (¢+0,z) - =— G_ (-0,7) = 1.
az3 P 2z3 P

The equation (4.1)

d“qﬁ d2¢
—E s (w240 2) L 4+ 2,20 =0 4.4
dz" a 87 422 O (-4

has the auxiliary equation

ty 2 2 2 2 2 -m + = ——
Dt + (uu + Va ) D¢ + Vo Vg 0; D= (4.5)

with roots ¢ iva , t ivB. Hence (4.4) has four linearly independent

iv z =iy z iv z - z
solutions e Ua , B Ya , € vB , € 1“3 . Therefore we take
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G (2,2) = A (e 2®+8 ()e Ma v (1) VR 4D (rye iVBZ,
P P p P D
z <t
(4.6)
) Iv,z ivpz
= EP(C)U a 4'Fp(C)E 8=, z > L

with T(vy) >0, I(uﬁ) > 0 so that the conditions at infinity are

satisfied.

The conditions (G3) and (G4) applied to (4.6) yield the following

set of equations

{A -E )ei“ﬂc~+u e_iva; = (F -C ) eivBc-D e*ivﬁC (4.7a)
p P p PP P

val (A -E ye'a® - By @ Vat] = ugl (¢ yelVst +D TR (u.7m)
vyl (Ap-np)ei"u"’ +8 e Vot vg?[(F ¢ yelV8" - D e 85T (a.7e)

iv, ¢ -iv ¢ ir, ivgg ~Lvgg
3 - a* 2 - 8 B -
v, [(Ap Ep)e Bp e o’} vg [(1?p Cp)e +Dpe I-1 (4.7d)

Mulciplying (4.7a) by vﬁ?,u“2 respeciively, and subtracting the result-

ing equati{ons from (4.7¢) leads to

—21uaC

A - E =R e (4.8a)
% P

(4.8b)
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Substitution of (4.8) in (4.7b) immediately gives

v B e_ivuc = 3 D e-'ivﬂc (4.9)
o p B'p

whence putting (4.8), (4.9) into (4.7d) leads to

iv_z _ 1“65
B = Bp - ie a — D = Dp - __EEL_;___; (4.10)
2 . -
ZUu(Vu va ) ZUB(va Vg )]

The only remaining conditlons to consider are the boundary equations

Bl(Gp) and Bz(Gp) which, from (4.6), immediately give

(A + B)(vaz +¢e1) = -(C; + n)(uBZ + ) (4.11a)

(A, - B)uu(20a2 - vsz +g)) = = (C = D)vs(vaz +€p) (4.11b)
and

(A + B)(v 2 + ¢3) = -(C3 + n)(uﬂ2 + €3) (4.12a)

(4, - B)(uaz - k2) = -2(C; ~ D)v,v (4.120b)

8
These give pairs of simultanecus equations in AP, Cp. aolvable in terms

of the known functions B, D given in (4.10). Defining A, A', A" by

A= (v? - K2y’ + by, v k? (4.13a)
At = (uB2 - K2y . by, vgk? (4.13b)
A" - - 4k2(uﬂz - k2) (4.13c)

glves, using (4.10) — (4.12),

ovs
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fvar iv .t
i 4] AT Al
A = 5= { S —— (4.14a)
ZA(\Ju vB ) UB Ua
- LI U(lc
Ci = 3 “%“, 5 _jjfi - - Eiiﬁiﬁ:_“} (4.14b)
Alv -vg ) K2 Vg
and
i eivuﬁﬁn v, A" eiuﬁq
Ay = 2_ v il e | (4.15a)
ZA(V H ) Va k2
{ e VBT e1Valyn
Cﬂ = 2&(0 2-0 fs VB -_— - 6;_““} (&-ISb)

The quantities Ep, Fp now follow immediately from (4.8). Thus from

(4.8),(4.10),(4.14) and (4.15) the Green's functions given in (4.6) are

ei(vﬂﬁ+vuz) vBei(u“C+sz)

i " -
Gy(z,c) zﬂ(uuz_vﬂz) {a"( vﬁ k? )
A (_ifa(r+{l . EifB(c+2))}+ L eiVa (z2-0)  _ivglz-1)
Vo vg Z(Ya2_UB?3 ( Vo - vg )
iv_{r-z) ivg(c-z)
0 (z-r) + (22 -t B ey (4.16a)
UU UB
and
; “ei(“BC+"uz) 1(vqt+ugz)
— - _ " - e
G3(z,r) = EE?;;?-QE?) {a" ( 2 o )
elva(a¥a) v (r+e) . e (m0) iy (zn)
+ At ”“u;-.__+ T :ﬁ:")}'*2(6“5;u 73{( “u T _"'JA'" )
u (g-z) ivﬁ(r-z)
0(zr) + (e - 8P gy (4.16b)
o Vg

6 being the Heaviside unit function.
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We note that the Gp are not symmetric and that, considered as functicns in
the complex k2-plane, they contain branch point singularities when Vy = 0,
vg = 0 i.e. kZ2=p2/q?2, k2 =« 42/g2, The situation with regard to the
singularities will be considered in detail in a subsequent report, when we

integrate the Gp in the k2-plane in an attempt to obtain the spectral

representation of the Rayleigh wave operator L.

5. Operator Bundles

Given a Hilbert space H on which are defined linear self-adjoint

operators A, : W+ U, {=0,1, 2, ..., n, an operator bundle of order n,

i
Ln(g), is defined by

L (€)u = Agu - EAju - £2Au = ... - EnAnu (5.1)

for v e H where £ is a parameter {(real or complex). The spectral theory
of these bundles is closely linked with multiparameter spectral theory, and
has been studlied by Roach and Sleeman (1977, 1979) and Sleeman (1978). Of
particular interest to us are the operators L,(£), called quadratic bundles,

If we consider the operator (2.10) we may; using (2.7), rewrite this as

where ¢ = k%, and

2 2 2 2 Y 2 2 2 i
A-(_d._+2_)(..g...+5’.~)-_g__+(.m._+ﬂ_)__d_+m
dz2 42 dz2 g2 dz! a2 g2 dz? q2p2
2 ? 2 2
l}-(_g._...+w._)+(.d_+9.__) (5-‘)
dz?2 g2 dz2 g2
C = -].
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Thus the Rayleigh wave operator is a quadratic bundle. The applicability of
the theory of quadratic bundles to the problem of the spectral representa-

tion of L will be considered in a subsequent Teport,
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