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i 2 Super Quasi-adeguate Semigroups

R.- J. Warne

Lat S be a gemigroup and let L denote Green’s relation on 5,
For a, b € S, let (a,b)€L’ if and only 41if (a,b)EL in some
oversemigroup of S. R* i8 defined dually and let H* = L* N R*.
From ({113} or (121), {(a,b)€L* if and only if, for all x, yESt (S
with an appended identity), ax = ay if and only if bx = by. So L*
i & right congruence relation and R* 18 a left congruence
relation. Fountain (9] terms & semigroup S abundant if each L*-
clage of 5 and each R®*-class of S contains an idempotent, and
Fountain {91 terms S superabundant if each H*®* -class of S contains
an idempotent. If S is a regular semigroup, L* = L and R* = R.
Hence, regular semigrdhps are abundant semigroups and unions of
groups are superabundant semigroups.

In (9], fountain gave superabundant analogues to the Rees
Theorem and Clifford’s well known theorem that a semigroup is a
union of groups if and only if it igs a semilattice of completely
simple semigroups. In [7], El-Qallali terms an abundant semigroup
S to be L*-unipotent 1f E(S), the set of idempotents of S, form a
aubsemigroup and each L*-class of S containg precisely one
idempotent. In [7], El-Qallali gives a structure theorem for
guper L*-unipotent semigroups on which H* is a congruence (L*-
unipotent bands of cancellative monoids (71). A semigroup S is
termed L-unipotent if each L-class of S contains precisely one

idempotent (equivalently, S i=g aorthodox and each J-class of E(S)
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ie & right zero agsemigroup [20]). El-Qallali’s thecrem is a
superabundant analogue to Bailes’ atruciurn theorem for L-
unipotent union of groups on which H is a congruence (L-unipotent
bands of groups) [(11.

Let S be an abundant gsemigroup. Fountain (8] terms S an
adequate semigroup i1f E(S) iz a semilattice. El-Qallali and
Fountain [6] term S a quasi-adequate semigroup if E(S) iz a
subsemigroup. If, furthermore, L im a congruence relation on
E(S), we term S a generalized L*-unipotent aemigroup. El-@allali
and Fountain ([5], term a congruence g on S good 1f a L*b implies
agL*bp and aR*b implies apR®byp.

In section 1, we give a structure theorem for super quasi
adequate sgsemigroupe S (Theorem 1.11), We first specialize the
above wmentioned resgulta of Fountain to super quasi-adequate
semigroupas S. In particular, S is a semilattice Y of semigroups
(S, 1,€Y) where S, = T, X E(S,) (algebraic direct product) where
T, is a cancellative monoid and E(S,) is a rectangular band
(Lemma 1.1). For {(g;4i,3), (h;r,a)€é8, define (g;i,J)&(h;r,s} 1if
(g;i, j), th;r,s)€S,, say, and g=h. Then, & 1 the minimum
adequate good congruence on S (Propoeition 1.3) and S/&6 ism a .
strong s=semilattice Y of the T, (Lemma 1.4). Then, St divides
Va(é?%)* vhere V ig an L-trivial and idempotent monoid, o iz
wreath product, .~ ig the Rhodes expansion, (é?%) im a gemilattice
Y of left cancellative gsemigroups (X, :,€Y) with idempotents, and
E((é?k)> is a semilattice Y of right zero semigroups (E(X,):,€Y)

{Theorem 1.11). If S is an orthodox union of groups, & becomes
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the smallest inverse semigroup congruence on S, T, becomes a
maximal subgroup of S, and X, = T, X Etk,) (algebraic direct
product) (see Lemma 1.12). Hence, Theorem 1.11 is & superabundant
semigroup analogue to our atructure theorem for orthodox unions
of groups [261].

In section 2, we give a structure theorem for super
generalized L*-unipotent semigroups S(Theorem 2.4). We first shaw
that 8NL 1ias the smallest L*-unipotent good congruence on S and
S/7&NL is a semilattice Y of the semigroups ((T, X J, ):,€Y) were
Jy i3 an R-class of E(S, ) (Proposition 2.1). Then,

S £ W o (E(S}/L)* o (S/8NL)!

(S meana "is embedded in") and S/&NL

S (S/8NL/P)t & (E(S)/L)t vhere

W is a lower partial chain Y of left zero subsemigroups of E(S),
¢ i= the smalleat adequate good congruence on S/&NL, S/6NL/@ is a
strong gsemllattice Y of the T,, and'% is reversge wreath product
(Theorem 2.4). An orthodox semigroup S is termed generalized L-
unipotent if L 18 a congruence relation on E(S). If S is a
generalized L-unipotent union of groups, &NL becomes the gmallest
L-unipotent congruence on S. Hence, Thecrem 2.4 ig a
superabundant analogue toc ocur structure theorem for generalized
L-unipotent.unions of groupsa [24],

In section 3, we show that if S is a super R®" -unipotent
semigroup, then SS(E(5))*'0(5/8)' where E(S) is a semilattice Y of

left zero semigroups (Theorem 3. 1), Theorem 3.1 iz a
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superabundant analogue te¢ cur satructure theorem for R-unipotent
unione of groups [(24].

Abundant semigroup analogues to many theorems in regular
semigroup theory have been given by Fountain ((81,(91), El-
Qallali and Fountain ((35],(6]1), and El-Qallali [71.

We have atudied the structure of generalized L-unipotent
semigroups in ((211, {22]1,[23],(24)), R-unipotent semigroupe have
been studied extensively by many authors - maost recently by
Szendrei ([14],([(151).

A gubmonoid of a monoid S is a subsemigroup of S containing
the identity of S.

A sewmigroup {(monoid) S is w=maid to divide = semigroup
(monoid) T if there existz a homomorphism of a subsemigroup
{submonoid) of Tonto S. We also say T covers S in this case and
write S<T. If there exists an igomorphism of S into T, we write
SsT. R,L,H,D and J will denote Green’s relations and E(S) will
denote the set of idempotents of a memigroup S.

See (9] for the definition of J-. If S 41is a regular
semigroup J*=J.

We adopt the following notation and definitions from (24,
p.181-1821: S' (S with appended identity}, s, wreath proaoduct "o"
of semigroups, reverse wreath product "B of gremigroupe, type A
gemigroup congruence {(for example; inverse gemigroup congruence),
ap(a€s, a semigroup)(@, a congruence on S, will also denote the

natural homomorphism of S onto S/e), and unions of groups.
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For other definitions not given in thias paper, gee [2]1 or

[10]. We also adopt +the notation of F2] unless otherwvige
specified.

A monoid S ig termed L-trivial and idempotent if each L-

clags of S is a singleton and S is a band.

Section 1 - tructu uper Qu ~Adeguate Sem oups

In this section, we describe the minimum adequate good
congruence § on a super quasi-adequate semigroup (Proposition 1.3
and Lemma 1.4) and give a gtructure theorem for super quasi-
adequate semigroups (Theorem 1.11)

Let S be a smemigroup. For ,€5, L.* or L.*{(S)(in case of
ambiguity) will denote the L®-class of S containing . (notation
of [9])),

Let S be a semigroup and I and J be sets and let P:J %X I —
S with ¢(,,.) P=p,,. Let M(5,I,J,P) denote S R I X J under the
multiplication (a3, ;){bj.,s)} = (a p;. bi(,e’. We term M(S,I,J,
P) a Rees Matrix semigroup over § with entries in P,

The folliowing lemma gives the "gross" structure of super”
quasi-adequate semigroups.

Lemma 1.1, A migrou ig gsuper gquasi-adequate if and only

if S ie n memilattice ¥Y=S5/J* of semigroups (S, :,€Y} where S, = T,

XE(S,) where T, is a cancellative monoid and E(S5,) is a
rectangular band, L.*(S) = L.*(S5,) and R.*(S) = R,*{(5,) for ,€Y

and ,€5, and E(S) ia a semilattice Y of rectangular bands (E(S, ):
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Proof. Ytilizing {9, Theorem 6.8 and its proof and Corollary
5.2], we& obtain the above éhnorem (except the statement about
E(S)) with §, = Mm¢T,, I,, J,,P,), a Rees matrix semigroup over a
cancellative monoid T, where the entries of P, are units U of T,.
A is easily shown, ([2,Lemma 3.6] ims valid for the above matrix
semigroups if we require the mappings to have range U. Using this
Lemma, we may "normalize" P, such that all the slements in a
given rov and a given column are the identity e of T,. Then,
uming the assumption that E(S) is a aubsemigroup, we may show p;.
= e for all j€&J, sand 1i€I,. Hence, M(T,,I1,,J3,,P,) = T, X E(S,)
where E(S,) is a rectangular band.
To show & is a congruence relation (Propesition 1.3), we

will need the following lemma.

Lemma 1.2, Let S, = T, X E, and 5, = T, X I, X J, where T,

and T, are cancellative monoids, E, is a rectangqular band, I, is

a left zero gemigroup, and J, is a right Zero semigroup. Assume

thege existe
a) a left répresentation a» —»Aa of S, b, transformations of I,
b a right representation « — Q. of S, by trangformations of J,

c) a_homomorphism @ of T, into T.,

Define a binary operation on 5, U S5, extending the given

oneg on S, and S, by defining producte aof . = {a,e)E5, and

(b;4i, J)ES, 88 followe:
(a,e@)(b;i, j) = (a®b; Xai, 3}




Then, S, U S, becomes a semiqroup with S, an ideal.

Cgnv evVer ogeible binar iative operation on S,
U S. extending the given ones gon S, apd S., and such that S, is
an ideal, csn be constructed in the ghove wmanner.
Proof. Lemma 1.2 haz been established by Clifford {3, Lemma

2.51 in the case T, and T, are groups. Clifford’s proof im easgily

seen to be valid when T, and T, are just cancellative monoids.

Proposition 1.3 Let S be a guper guasi-adequate semigroup.
Then, & is the minimum adegquate good congruence on S.

Proof. We first show that & is = congruence relation on S.
Let & denote the smallest congruence on S containing &. Suppose a
s b. Then, there exists a = a,, #g,++24+.,80 = b€S guch that a, =
MUYy, Byt = X Vi Y wvhere x,,y,€S5' and (u,, v, €& for 1sisn-1.
Let %, = (w;1i, j),€8,.,, ¥: = (h;r,8)3€S8,, u, = {g;m,n),, and v, =
(g;c,d),. Hence, @ = (A;P,QleavrESeav and 8ies = (Bik,1)ua, €
S.er Bay. Let 8 = ,4,+. Thus,
(A;p,gle = tw,1,3).¢gsm,n). Chir,a),
(B;k,1)s = (w;i, jl.(gje,d). (h;r,8),

Multiply both of the above equations on the left and right

by {(e;p,q)e where e im the identity of T,..

Hence,

(A;p,gle = (W3i, Jdetgim nde (h3T, 80
(Bi;p,qle = (W;1,3detg;c,d), (h;T, 8,
say,

Using Lemma 1.2

(A;p,qde = (W(Gh, )31, 3R ase,nredethir, s = (W(gW,, 4)h;1,8)..
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vhere &,,s is the homomorphism of T, into T, given by Lemma 1.2
and (B3P, Q)e=(W(glv e 231, TRiavarar  doChir, m)y = (W(gd,, dh;1,m),.
Hence, A=B. Thus a,; éa,.. for 1£isn-1. Hence, aébh. Thus, E=a, and,
hence, & is a congruence on S.
Let a€S and let a*, a*€E(S) such that a*R*a and a*L*a. Using
(9, Corollary 6.2 and Proposition 6.5) and Lemma 1.1, a*, a*,
a€sS,, =may. Hence, using [6,Corollary 2.4 and Proposition 2.61, &

is the minimum adequate good congruence on S.

Lemma 1.4, Let S be a2 = uvagi-adequate emigroup. Then
S/76 ig a sgirong semilattice Y of capncellative monpids (T, ;:,€Y).
Proof. Let (g;1,J) denote the & - clase of S containing

(g;i, J). Since (g;i,Jj)T=g defines a 1-1 map of 8/7&68 onto
T=U(T,:,€Y), T becomes a. groupoid under the multiplication

ab=(at- 'b7-')7 and < defines an isomorphism of S/4 onto T. If

g, h€T,, g,h=((g;i, 3)th;k,e))T = (gh;i,e)t = gh{the last product
ie multiplication 1in T,). Hence, T ie a semilattice Y of
cancellative monoidms (T,:,€Y). For a€T. and .2y, define a‘c.,, =
ae, where e, is the ildentity of T,. It is routine to verify that
G:,y i8 a homomorphism of T. into T., ¢,,, 12 the identity map on
Ty, and, for a€T,, b€T., ab=ag,,,.b¢:.,y.. Using the fact that the
idempotents of T commute by Proposition 1.3, its eagily seen that
CrrabGe,w=Gy, s fOor ,2.:2. . Hence, T 4is a sestrong semilattice
¢(Y;T,;qy,s} of cancellative monocide (notation of [10]1). We
identify S/&6 and T.
A

We next deecribe the Rhodeg expansion S of an arbitrary

gemigroup S (see [17] and [(13]). The Rhodes expangion and certain
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of its properties will be crucial in developing our structure
theory of auper quasi-adequate semigroups. If a, bES, asb means
alUSasbUSb and a<b means asb but afb. Let S. ={(&,...,8, ):8,€S
for 15isn and 8,S8.5...$8, )., If X = (@a,.c.,8.), ¥ ® (£a,...,t,)
define xy = (8ata,..., @ te,ta,sse,ti). Then, S. iz a semigroup
under this multiplication. If a = (m.,...,8; }€ES. and 8..,La, for
some 1skin-1 delete s to obtain a,€S. and denote the deletion by
a ¥ & . Perform a <> a, —> ... ~>a, vhere a, = (8n,B8a1s «=+,
B.r) with 8.%<84.1%...%38,, (Buch an a. is termed an irreducible
element of S.). Write &a. = red a and a-b if red a = red b. The
equivalence relation . ia a congruence relation on S.. Let g =
S. /. g iz termed +the Rhodea expansion of S after its inventor
Jehn Rhodes. g will be treated as the set of irreducible elements

of S. under the multiplication abz redt(ab).

A
Lemma 1.5, Let S be a super quasi-adequate gemigroup. Then, S
is a semilattice Y of subgemigroups (F,:,€Y) where F,=((a., a,-

N
trree, @y )BLES,,a, €S} and E(S) is the semilattice Y of

rectangular bands

E{Fy) = {(((ey;1i,3),8e-1,+4.,8,):(0,31, J)EE(S, ), a, ES}.
~~
U=(5/4) 13 a semilattice ¥ of left cancellative semigroupg with

idempotent (X,:,€Y) where X,={((8n,8a-1,+r..,81):8,€T,,a,€ES/8}.

E(U) ig a semilattice Y of right =zero semigroups (E(X,):,€Y)

vhere E(X,)={(e,,8n-1,...,81)%e,, the identity of T,, a,ES/&}.
A ~
Or{8.,8n-1,5..., 81 €S, let (Bn,8Bu-14+44,8,)0=red(a.b, a,-

A ~ A~
td,...,a18). Then, & defines a homomorphigm of S aonto (S/4&).
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Proof. To establiah the second mentence of the lemma, utilize
l.Lemma 1.1 and [16, Lemma 6.73i{(see also [(17,Lemma 11.4]1 and (24,
Theorem 3.1(f£)31)., Utilizing Lemma 1.4 and {24, Theorem 3.1(f£)3,
it i@ easily checked that U ia a memilattice Y of the semigroups
(X, :yEY) and that the fourth sentence of the lemma is valid. We
next show X, is left cancellative for L,€Y. Let (x.,x,-
tpven X )y (Bp ), Bn-1,:+0:,8,), and (bh.,bs_;,...,b,} he elements of
X, and suppose that (x,,x.-.,...,x.).(l.,a.-.,..;,n;)= (X , X -
tpeeas My deiba,bect,eee,by ). Hence, red(x, a8,, X, -
18uy s ) Xy Brnyr8upB8u-1s-s,8)red{xab,, X1 be, .., %X, be, Ba, be-
1se.s,b1). Thus, x.a.=2x.b,. Hence, gince T, is a cancellative
semigroup, @s =b, . Thus, n=8 and a;=b, for lsgisn. The last
gentence of the lemma 18 a consequence of (16, Propositioen
6.6)(gee alao {17) and [24, Theorem 3.11<¢(h)1).

In the remainder of this sgection, S will denote a super
quasi-adequate semigroup.

If A is8 a semigroup and a=(a.,...,a.}€i, let lal=n. We term
ilal the length of a.
Lemma 1.6, 1f z€5, 1zi=iz61
Proof. Let z={a@n,8n-15.2:,8.1). Suppose au.:4Lasé for some
l1sksn-1. Using Lemma 1.1, let @u.1#(gQuer,teers Juer }ES,, say, and
ay=(gujiu, Ju2€5,, say. Thus, a...8&=g...€T, and a.s=g.€T,, and,
hence, g«.:Lgu(in S/8). Using Lemma 1.4, it easily seen that y=z
and g«.1.*pg. where p i3 a unit of T,. Since a..,; <a«, 8x.; =28, for
some s€5. Ve may take g=(8’;m,n}ES,. Hence,

(Giuerdeers Jusrd=t8’;mnd(geiile, ju ). So, b P T Thus,
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(gh3ihpjh)=(p-.31unjk)-(guonFiuol,pjuo;). Hence, Bu¢|l..8|., a
contradiction. Thus, red{a b, Bn-16,...,8:8)2(a.8,84-16,...,8,6)
and lzl=1z&8).

N
For ,EU={5/68), let U,={x€EU:, x=,}
A A }

Lemma 1.7, For t€u, Uy 5-* SE(S). It « EX,, U, &6

LSU(E(F. Y1, 2,0,

Proof. Let s€U,%&-', Hence, sﬁéu.. Using an important theorem
of Rhodes [13, Theorem A.1V. 11, (33)""'=(-3)"'. Let g=(g,, 8,-
«y...,® ). Then, 33-_(-:.5.5.-,6,....;.5). If m.=(g;i, jIES,,
a,&=2g€T,. Thus, pr,(s?)""‘=g""‘ and pr,(sg)""g"'. Let e

denote the identity of T,. Thus, =ince T, is a cancellative
monoid, g't'e=g‘''' g implies e=g. Hence, g _€E(S), Thus, using
[24, Theorem 3.1(f£f)1], BEE(%). Hence U.z“sE(g). The last sentence
of the lemma is a consequence of the definitions of U, and 8§,
Lemma 1.5, and the first sentence of the lemma.

If we replace “E' by "&", "X," by F,","G," by "T,", and
"U, "by "X," in [26, Lemma 5, Lemma 7, Lemma 8, Lemma 9, Lemma 111
{(if u.?-t#n and the last msentence 18 omitted), Lemma 12, Lenma
13, the first two sentences of Lemma 15, Lemma 16, Lemma 17, and
Lemma 18 (with "and ...Y¥“" omitted)), these lemmas are valid for
quasi-adequate semigroupse S. The proofs of these modified lemmas
are the same ag the proofs of the original lemmas in [26] except
that we replace Lemma 1 of [26] by Lemmasz 1.1, 1.4, and 1.5 and

Proposgition 1.3:; Lemma 2 of (26] by Lemma 1.6; and Lemma & of

{26] by Lemma 1.7 in the proofs of the original lemmas. Using
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Lemmas 1.1,1.4 and 1.5, Proposition 1.3, Lemma 1.6, [26, Lemma

31, Lemma 1.7, and the modified Lemmas, we obtain

Lemma 1.8, If U.E"#D, then U.g" is = chain g... of
rec r bands (H,:,Gg...) vhere ?... ig ® sub-chain of
Pivr=(1,2,...,t¢l} unde the revers of the ugual order.

Furthermore, every element of W, has length ;.

Lo
Let (€X, and suppose that I.i=,. If x,y€EU,8-', define xa’y

if and only if ax=*ay for all a€W. wvhere , im the least element of
[

If we make the usual modifications and furthermore replace
"¢" by "¢’", (26, Lemma 21 and Lemma 23] are valid for super
quasi-adequate gemigroups S. The proofs also remain valid of we
replace “o” by o’, 'e' by *", k by k, and Lemma 7 by modified

Lemma 7 if we note that e,Lg, (notation of (26, Lemma 231) by

virtue of the modified Lemma S.

fa)

Lemma 1.9. If U, 6-'#0, L is a congruence relation on U.g“.

Hence, Ue -t /L im a chain ?,,, of right zeroc semigroups
oy,
(W, /L:,€P, 4. ).

Proof . Replace "&* for “E', Lemmas 21 and 23 by their
modifications, and Lemma 1.8 for Lemma 20 in the proof of
[26, Lemma 24].

Let ., be a homomorphism of a monoid S onto a monoid T, we
define a category R. as- follows: obj R.=T. For t,, tg€T,
Re (t(,te)={(%t,,8,1e):8€E5 and te=t,(3,)}. For (t,,s,,ts)ER, (t,, te)
and (tey,Be, ti1)ER, {te, t; ), wve define the composition

(t,,8,, ) (te,8s,ta)={t,, 882, ta). It 1is8 eagily checked that
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(t,,s.-.,t;)ER.(t.,tg).and the compoaition is associative vhere
defined. The identity arrow of R.{(t,t) i8 (¢,1,t) vhere 1 is the
identity of §S. So, R. im a category. Let a be a congruence con S
and for (t,, s, ,%t:), (t,,me,ta)=R, (L., ts) define
(ty,a,tednit;,8,ts) if and only if am,=2s8, for all s€t, -! and
@, 68:. Then, by {26, Lemma 25], r is a congruence on the category
Ry» Let D.,*=»R,/r. Following Tilsan [18], we term D.* the derived
category of 7. Let (%t,,8,,te]€D,*"(t,,t:) denote the r-class of R.
containing (t,,m,,tsYER, (t,,t,e}. We define xly (in g) if =, ye€F,
for some v. Clearly, Ais a congruence relation on g
Lemma 1.10, For .E(é?k), Ev/8,y)JT=8L definem an igsomorphism
9f Di (v, e opte (Us3-t/L)0.
Proof, Suppose BLz(-.zGU.g") Hence, using Lemwma 1.8, g, z€W,
for some ,Eg.... Thua, using modified (26, Lemma 231, =sc¢’=z.
Hence, xs=xz for all x€W; where ,=l|,i. Since .(x3)=., .ng. Let
«={(Qxy Gu-14-+4,01). If g=,, using [15,Proposition 7.11{(valid for
arbitrary semigroups)(see also (17, Propogsition 12.11), Lemmas
1.6-1.8, wend (24, Lemma 3.1[f], x6=(€u,Qu-1,.-.,G:) where
@, **e,Lg.. Using Lewmas 1.5, 1.& and 1.8 if ue.g", then
u=0(gudu, Jud, (Ques iduct s I deeea, (gasiy, 310, gay. Since
Wi=W.=E(F.’ )NU, 5-* (vhere . -> . defines isomerphism of P. into
Y)(see [261), let x=((eujlu, Juds(Gu-vsdu-s,Ju-tdseen,(gisdls,jo)?).
Since (gujiu, Jull{ed;4iu, Ju’, it is eagily checked that ux=u.
Hence, us=uxs=uxz=uz. Since e, z€W,, BAZ. Thus, (¢,8,¢3=0,,2,.:1.
Next, assume ,.>7. Then, using [17, Proposition 12.11}, Lemma 1.7

and (24, Theorem 3.1(£)1], t=(gw., Qu-trr++ 4 ErGR-ts++-.,G:1 ) and
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xa=(e;,g:-.,...,g;) wvhere gilegz=e;?. Hence, us(gy ;ie, ju?, (gu-
s dduci s -ty tgizin, JR ), (@R 3dn-a, dR-0 )0, (@i ide, 302 and
x=((@p i, dud, (@i da-adyees, (gadis, Judd. Since
(Qe jda, Jad<(gisin, Ji) for i<uSu, (Qaita,Jdellen;in, Ju)2(gaiie, Ju)-
Furthermore {guiz, JudLl(egin, Js). Hence, by a routine
calculation, ux=u. Thus, as above, [,,8,.1={,,=z,.1. Converasely,
assume [y,8,.]1={.,=z,,]. Hence, 8,2z2€F,, say and xg=xz for all
xE.E". Using (26, Lemma 22), 8<z or zs$s. Uaing Lemma .7, s=z=s
or ze8=z. Since g, 2z€W, for some Jj, 8Lz in either case. Thus,
(v)8, 4 17=8L(8€EU, 5 ') defines a 1-1 map of Di* (.,.) into (U, 3-
VALY, Clearly, T i a surjection. Using Lemma 1.9, < is an
igomorphiam.

Theorem 1.11, Let S be a super guagi-adequate semigroup. Then,
(1) S < Va(S/6)

where V is an L-trivial and idempotent monoid, 6§ isg the minimum
adequate good congruence on‘ 5, (é?k) ig a gemilattice Y=S/J* of

left cancellative semigroups (X,:,€Y) with idempotents, and

P
E((5/4)) is a semjlattice Y of right zero gemigroups (E(X,):, €Y),

Proof , Utiiize Lemma 1.5 (define 14&=1), Lemma 1,10, [26,
Lemma 29], and [26, Thearem 26)] to establish (1). To complete the
proof utilize Proposition 1.3 and Lemma 1.5.

Remark 1.12 If E i the edge set of the graph obtained from
D‘.‘L by removing the identity arrows, then V is the free monoid
over E relative to the equation Xyx=yxX{x, yEE! } (gee [26]-
especially the proof of [26, Lemma 291). V is a gemilattice A

(set of all finite subsets of E wunder union) of right zero
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semigroups® (Up :PEA) where Up denotes the set of all elements of V

with content P{seel2],[10] and [26, especially Theorem 271)

Lemma 1.12. Xy =C,*E, where C, is a cancgelliative manoid and E,
is 8 rjiqght zero semiqroup if and only if T, is & group. In the

cage, X,=T, X E(X,).

Proof. Suppose X,=C, X E,. Then, Using (19, Theorem 2], a€aX,
for all acX, . Thus, (an)=z(a,)e for some e€X,. Hence,
(a.)e=(a,)et. Thus, using Lemma 1.5, e=et. Hence, using Lemma
1.5, (a.)=(a.)(e,,x.-,,.f.,x,) vhere e, is the identity of T,.
Thus, (a.)=red(an.,e,,Xu-1,...,%X:). So, a.Le,. Hence, using Lemma

1.4, e, =8a, vhere 28 may be taken as an element of T,. Thus,

a, 8a, 23=a, e, 2%5, ¥-a. 8€,. So, a,g=e, and, hence, T, i2 a group.
Conversely, suppose T, is a group. Let (a.,an-1,...,a4)EX,. Then,
(@n) Bu-1,css,t=(aAn) @, ,80-1,+..,8:), Since (a.)(b,)=(a,b,) for

8n, b.€T,, T,¥((a,:a.€T,}. Thus, it is easily checked that every
element of X, may be uni&uely expregged in the form (a)e where
a€T, and e€E(X,) and (a,e) ~» (a)e defines an isomorphism of T, %
E(X,) onto X,.

Remark 1.13, In the case S is an orthodox union of groups in
Theorem 1.11, 6 becomes the minimum inverse semigroup congruence
on 5, J*=J and X,=T, X E(X,) where T, is a maximal subgroup of S
thence, X, 1iB a right group). These facts are a consequence of
Proposition 1.3, Lemma 1.1, and Lemma 1.12. In this case, the
gtructure of (é?k) is further refined by [25, Theorem 2.61(see

algo (26, Theorem 311).
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Section 2. The Structure of Super Generalized L* ~unipotent
Semigroups.

In this msection, we describe the smallest L*-unipotent good
congruence on a super generalized L* -unipotent semigroup
(Propoegition 2.1) and give a structure theorem for super

generalized L* -unipotent semigroups (Theorem 2. 4).

Proposition 2.1, Let S be & super generalized L*-unipotent
semigroup. Then, &ML the smallest L*-unipotent good condgruence

on S. S5/8NL is a semilattice Y=S/J* of semigroups (M, :,€Y) where

M,=T, %X J, vhere T, is the canc ative monoid of Lemma 1.1 and

Jy, is an R-class _of E(5,). E(S/6NL) ig =a semilattice Y of the

right zero semigroups (J, :,€Y).

Proof. We first show that &ML is a congruence relation on S.
Utilizing Proposition 1.3, &NL i=s a right congruence relation on
S. Let :ﬁi be the smallest congruence relation on S containing
6NL. We will show that Zﬁi=éﬂL. Suppogse a (Eﬁi)b. Then, there
existe a=za,,8s,...a3,=bES 8such that a,=x%,u,, a,.,=%v, where x,
Y+ €5 and (u,,v,)ESNL for 1s1<n-~1. Let x,=(g;i, k).€ES,, uL=(w; g, 3
€5, , and wv,=(w;t, j)a €S, . Since §é is a congruence relation,
a,=(m;p,q}., and a,.,={m;i,d}, , say. Let .=, . Then, ar Tak T,
Hence, (m;p,q).=(g;i,k).(e,;i,k),(e\;s,J)k(w;s,j)L and
(m;c,d).=(g;i,k),(e,;i,k).(el 3t, 3y, (w;s, 3y where e, is the
identity of T..

Since L is a congruence relation on E(S}, (ec;i, k). les;s, Jiy
L(e.;i,k).(eh;t,j)h . Hence, (e i, k). {ey ;8,JIn=(e,:8°,3J’)s and

(e,;i,k)e (e, 3t, Jy=(e,3t",3’)., =may. Hence,
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(m;p,qle=(g;i, K} (e38", ]’ )alw;B, 3
{(mjc,d),=(gsi, k) (@ ;t’, 1" ), IOy

Since L is a right congruence relation an s,
(e.;s',j').(w;s,j)kL(e.;t;J’).tw;s,j)h. Hence, (@.:8°,3")a(w;m, J)y
=(w*;8%,3%). and (e.;t’,j’)alw;m, J)) =(¥;&, j*),., say. Thus,
(mpp,)a=2(g:i, k), {(w*;2%, 3" ).
(mijc,d),={g;i, k). (w;m, 3"),.
Hence,
(. ;P,qQleim;p,qQle=(a;p,qle (gil, k) (w* ;m*, J* ),
(ea;P, QPalmic, d)e=(@a;p, qla(g;l, k), (W;8, j° ..

Suppose that (@e 3P, Qa (g3d, kK)o =(g; 1, Ke. Then,

Hence, q=d=3*. Thus, a,(8NL)a,.: for 1<i<n-~1l. Hence, a(&NL)b and,
thus &NL=&NL.

We will need to show that &NL*=8NL. Suppose a(&NL®*)b. Since
aébh, a=(g;i, j).€5, and b=(g;r,s8),€S,, say. There exists an over-
gemigroup S*of § such that s(g;i, j).=(g;r,s), where =2€S*. Hence,
(gsr,8),(e.;1, Jle=(g;r,=),.

Thus, i=s. Hence, a{éNnl)b. Thus, &NL* <4NL. Since LsL-*,
&NL* =&NL.

We next gshow that &NL is a good congruence. We will use (5,
Corollary 1.5]1. Suppose al*e vwvhere e€E(S). Let ax(&NL)Yay where
X, YESt. Thuasa, ax(énL'iay. Since al®e, axL*ex and aylL*ey. Thus,
exl.*ey. Using (35,Corollary 1.5] and Proposition 1.3, exéey for

some e*=e€lL’q. Thus, ex(&NL®*)ey. Hence, ex(sNL)ey. Next, let aR'e
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vhere e€E(S). Assume xntéﬂL)ga wvhere x,y€St, Thue, xa=(h;m,n).
and ya=(h;p,nl,, say. Let. fx{g,;m,n),. Then, xa=fya. Hence,
fxa=fya. Thus, uging [1l,Lemma 1.7)], fxe=fye. Since xaR®*"xe and
yaR*ye, it is essily seen that xe, ye, and f€S.. Hence fxezfye
implies xe(éNL)ye. Thus, 4NL is a good congruence on S by [5,
Corollary 1.5].

We next show that S/8MNL 18 an L* -unipotent semigroup. Using
[6, Proposition 1.61], S/&6NL is a quasi-adequate semwmigroup. Using
[6,Lemma 1.5), E(S/86NL)={e(sNL):e€E(S)}. Suppose e(SNLI)LELf(SNL)
(in E(S5/46NL)). Thus, (ef,e)ESNL and (fe, fYE&NL. Hence, e, f€5.,
=ay. Thus, esefe=af. Hence, el(dnNL)f. Thus, S/&6NL ia an L°* -
unipotent semigroup.

Let ¢ be an L*®-unipotent congruence on S. Suppose a(8NL)b.
Then, a=(g;m,n), and b=(g;p,n),, say. Thus a=(e,;m n).b. Since
(eg;m,n),L{e, ;p,n)., (e.;m,n).exte.;p,n).e. Hence,
aez(a.;m,n).ebe=(e.;p,n).bf-b&. Thus, 5anQ. Thus, &NL i= the
smallest L*-unipotent congruence on S.

Using Lemma 1.1, S,=T, X I, x J, (algebraic direct product)
where I, im a left =zero @emigroup and J, 1is a right zero
semigroup. Let M,=T, x J, (algebraic direct product). Let (572:3)
denote the 6NL-clase of S containing (g;i, 3). Then, (E?ITE)X
=(g, }) defines a 1-1 mapping of S/&NL onto M=U(M,:, EY). In a
aimilar manner to the proof of Lemma 1.4, we may define a
multiplication on M s8such that M is a semilattice Y of the
semigroups (M, :,€Y}) and MZS/&NL. The last sentence follows since

E(M) i8 a asemigroup.
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Remark 2.2 will be uaed in the proof of Theorem 2. 4.

Remark 2.2, Let © be a homomorphism of a asemigroup S onto a
memigroup T. Define D(8)={(t,s, t(=0)):tET ;=€SIU(0} under the
multiplication (t,,8,,t,(8,0))(t,, 8, ta (e B))=(t,,®Be,t, (B,8:38)
if ti(a,8)=t,; a if t, (8, 0)ft, and
Qi{t,s,t(88))=(t,n,ti{g8))0=0.0=0.D(8) was termed the derived
semigroup of © by its inventor Bret Tilson (seell6] and [17]).
Let & be a mapping of D(8)-{0} into a s=semigroup P. Following
Rhodes (13,Definition A.I.2.1, p.94]1, we term 0:D(9)—{0)})~>P a
parametrization of D(8) if 1) @ ia & partial homomorphism of
D(8)~-{0} into P{i.e. 1if XxX,y€ED(8)--(0) and xy#0, then x0y8={xy)6)
2) 2 satisfiex the embedding condition: 8, 8=3,0 and
(t,8,,t{8,0))0=(t, g@,,t(8,0))? for all +t&T* implies s, =@,. For
brevity, we also term P a parametrization of D(8). Using {13,
Proposition AI.2.33, SsPoT where plS=08 {(p is the projection if
FoT onte T). Follewing Rhodes [13), we define D" (8)(dual derived
gemigroup) as followa: D'(9)=(Gae)t,a,t):ses,tET‘)U(a} under the
multiplication ((g,8)t,,8:,8,)({(BaB)t,,ma,te)=((8,8)t,,8, 8¢, ta)
if t,=(8s0)ts; o0 if t,#(Be0)t,;0(l@d)t, g, t)=((88)t,8, t)o-0o=0., A
parametrization P* of D*(é) is defined ags above and S$T o P* with
PI1S=8.
Remark 2.3 will be needed for the statement of Theorem 2.4
Remark 2.3, Let W be a partial groupoid which is a union of a
collection of pairwise disjoint subsemigroups (T, :,€Y) where Y isg
a semilattice. If a€T,, bET, and y2z (in Y) imply ab is defined

(in W) and ab€T, and z2w and c€T., imply (ab)c=a(bc), ve term Wa
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lover partiml chain Y of the semigroups (T,:,€Y). Let X be a
semilattice Y of semigroupm (X,:,€Y) and let R and S be
semigroupsa. For the definition of WoXoR and SsWoXoR, see [24,
p. 188 and p. 1891,

Theorem 2.4. Let S be a u en ized L*-unipotent

gemigroup. Then,

(1) SsW'o(E(S)/L)'o(S5/8NL)t vwhere W is love art chain

Y=5/J* af Zero u igroups o E(S), E(S)/L is a
semilattice Y of right 2zgro semigrqoups, and &4NL isg the gmallest
*-unipotent ad congruen n S. Furthermore,

(2) S/8NL s(S/8NL/@)'0(E(S)/L)! where g is the swmallest adegquate
good congrugnce on S/4NL and S/&ﬂL/e i® & etrong semilattice Y of

cancellative monoida (T,:,€Y)(T, is a capncellative subsemigroup
£ S).

Proof. We will firet establish that SS(E(S))'o(S/8NL)*, For
each (g, J),€M, (,€Y)(Notation of Proposition 2.1), select a

repregsentative element u,,,,;:y, in S,. We first show that every

@lement of S may be uniquely expressed in the form w;.a,,m u..,,w

where "‘1“1 €le,,J),(6NL)-*. Let (g;i, 37,€S, snd suppose u..,,w
={g;ie,J}y. Then, (gsi,J)y=te,;i,3J), (gsie. 3y where
(e, ;1,3),€(e,, j), (8NLY)-t, It ig easily checked that the above
expression ig unique. If ,=(g, 3),., let L,*=(e,,j),. Thus every

element of S may be unigquely expressed in the form w.* u, where w,*
€, (&NL)-*. Let ,,€S/8NL and .€&.(&NL)-1', Hence, ve may write
Ues =£f{,, Uy where f£(,,.,)€{,,.)*(&NL)-1, Firgt asgsume S has an

identity. For (vrnre ta (ANL)IED(SNAL)Y-=-{D}, define
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(vrurn (g (8NLYYIB=E(,,,). We will show that 9:D(&NL)--{Q}- E(S) is
a parametrization of D{(éNL). It is easily checked +that 8 defines
a mapping of D(&NL)--(0) into E(S). Next, wve show that 9 defines
n partial homomorphiam. Let (o, ra,re, ta, (BNL))),
(e, re,reyte, {6NLIIIED(SNL) with e, (a, $6NL))=,,. We must show

oo, va Y0, say) = £, va,0,2- Suppose s €., (&NL)-* and

.x_E.‘(&ﬂL)_'- Th.ﬂ' Usy (s,stjﬂftt. 'l'ix)ut| 2, :;=f<t' re, 8y Yu,,

r ¥y

vhere f(,, ,4¢,s,)€(,, 5 )" (8NL)"*. Hovever, (u,, s,J)s,=fl,, ,.,)(u,,

D A ATTRONE - 4 PRI - P . Let ., €M, and +; €M., sBay. Hence,

z €, =z

€My,. Furthermore, ,, *€E(N,) and (, a, **E€E(N,,). Ueing the last

1S

sentence of Proposition 2.1, TR FTUE TS R SR P )’)(.;,aJ'=(._.

T

b A Hence, f('l r e )I('l re; )E(.‘ =, Y*(&NLY-1. ThuB’ f‘g‘ s, )f“;‘

reg )=, ya,s,), and, hence, 0 is a partial homomorphism. We next
show the embedding condition is valid. Let ¢ denote the identity
of S/86NL and let u., =1, the identity of &S. Thus, if
», (8NL) =, , (SNL) =, and flesa, 1=£C0,a, ), then
., =u.3.. =fle,q, JU, =i(e,.z Tus ZuLg, T4, . Hence, E(S) is a
parametrization of D(&NL). Thus, uaing Remark 2.2, SsE(S)oS/&NL.
If & hag no identity consider &S, Note that a(&NL), (in St
implies a=,. Hence, S'/48NLZ(S/&NL)'. Furthermore, E(S')T(E(S))+.
Hence, S<St's(E(S))'o(S/&4NL), Thue utilizing (24, Theorem 1. 24,
Remark(l.24)*', Lemma 1.23, and Lemma 1.25], we obtain(l). We next
estahlish (2). Let M=S/4&nNL. Utilizing [9,Corollary 6.2 and
Propogition 6.5), Proposition 2.1 and Lemma 1.4, M/g is the
strong semilattice Y of cancellative monoids (T,:,€Y). If ,€T,,

let .*=e,, the identity of T,. For each .EH/e, select a
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representative element u.G.e". We show @hat every element of M
may be uniquely expressed in the form u, v, wvhere w2 E.'g". Let
(g, Jj)yENM, and suppose u,=(g, j.?,€M,. Hence, (g, j),=(g,Js)y ey, 3,
vhere (e,,j),Ee,E“ and g®*=e,. Sugposc u. gt =u.h.*. Then, amince
M, (,€Y) is left cancellative, g.* =h.*. Let .€M/¢ and «€ap-t.
Hence, we may vwrite ,u,=u,.f(.,.) vhere f(.,.)E(..)'Q". First,
assume that M has an identity. For (t.e).,.,.)ED'(E)--(O}, define
((.t).,.,.)9=£(.,.). Uging the fact that H/e ie & strong
gemilattice Y of cancellative monoida (T, :,€Y), we proceed as
above to show that 8:D* (@)—(0}> E(M) is a parametrization of
D* (). Thua, wusing Remark 2.2, HSH/t%E(H). Again, proceeding as
above, usu‘scn/e)l‘&(s(m)t. Using Proposition 2.1, E(MZTE(S)/L,

Hence (2) is valid. To complete the proof, utilize Proposition

2. 1.
Remark 2.5, W is a lower partial chain Y of L-classes of
E(S). Eacn J-class of E(S) containa precisely one of these L-

clasmes (peel24, Theorem 1.241),

Remark 2.6. Let S be a generalized L-unipotent union of
groups. Then, SNL ia the mmallest L-unipotent congruence on S (&
iz the smallest inverse semigroup congruence on S), e is the
smallest inverse semigroup congruence on S/8NL, T, is a maximal
subgroup of 5, and J*=J in the statement of Theorem 2.4. Thus,
Theorem 2.4 generalizes (24, Theorem 1.27, Theorem 1.28, and
Theorem 1.26]1 in the case S is also a unieon of groups (our

structure theorem for generalized L-unipotent unions of groups).
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A different type structure theorem for generalized R-unipotent
uniong of groups is given in [22, Theorem 4,7)].
Section 3 uper R*-unipotent Semigroups

In this section, ve give a structure thearem for super R’ -
unipotent semigroups (Thearem 3.1)
Theorem 3.1, Let S be a super R®*-unipotent semigroup. Thus,
*= SS(E(S))'0(5/8)* where E(S) is a semilattice Y=5/J* of left
Zero semigroups, é iz the gsmallest adeguate ggod congruence on S,
and S/é6 is__a strong semilattice Y of _cancellative monoids
(Ty :, €EY)(T, is a subsemigroup of S).

Proaof, Using Lemma 1.1, S,=T, X E(S,) where E(S,) is a left
zero semigroup. Hence, by a routine caliculation, &NL=&6. Thus,
utilizing the proof of Theorem 2.4, + is valid. Use Proposition
1.3 and Lemma 1.4 to complete the proof.

Remark 3.2 . Let 5 be an R-unipotent union of groups. Then, &
is smallest inverse semigroup congruence on S, T, is a maximal
subgroup of S, and J=J* in the statement of Theorem 3.1. Hence,
Theorem 3.1 generalizes [24, Remark 1.14, Theaorem 1.12, and
Theorem 1.8)(our structure theorem for R-unipotent unions of
groups}. A different type structure theorem for L-unipotent

unions of groupe is given 1in [22, Theorem 7.21.
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