

King Fahd University of Petroleum & Minerals

DEPARTMENT OF MATHEMATICAL SCIENCES

Technical Report Series

TR 115

October 1989

Super Quasi Adequate Semigroups

R.J. Warne

Super Quasi-adequate Semigroups

R. J. Warne

Let S be a semigroup and let L denote Green's relation on S, For a, b \in S, let $(a,b)\in L^*$ if and only if $(a,b)\in L$ in some oversemigroup of S. R* is defined dually and let H* = L* \cap R*. From ([11] or [12]), $(a,b)\in L^*$ if and only if, for all x, $y\in S^*$ (S with an appended identity), ax = ay if and only if bx = by. So L* is a right congruence relation and R* is a left congruence relation. Fountain [9] terms a semigroup S abundant if each L*-class of S and each R*-class of S contains an idempotent, and Fountain [9] terms S superabundant if each H*-class of S contains an idempotent. If S is a regular semigroup, L* = L and R* \neq R. Hence, regular semigroups are abundant semigroups and unions of groups are superabundant semigroups.

In [9], Fountain gave superabundant analogues to the Rees Theorem and Clifford's well known theorem that a semigroup is a union of groups if and only if it is a semilattice of completely simple semigroups. In [7], El-Qallali terms an abundant semigroup S to be L*-unipotent if E(S), the set of idempotents of S, form a subsemigroup and each L*-class of S contains precisely one idempotent. In [7], El-Qallali gives a structure theorem for super L*-unipotent semigroups on which H* is a congruence (L*-unipotent bands of cancellative monoids [7]). A semigroup S is termed L-unipotent if each L-class of S contains precisely one idempotent (equivalently, S is orthodox and each J-class of E(S)

AMS Subject Classification 20 M 10

is a right zero semigroup [20]). El-Qallali's theorem is a superabundant analogue to Bailes' structure theorem for L-unipotent union of groups on which H is a congruence (L-unipotent bands of groups) [1].

Let S be an abundant semigroup. Fountain [8] terms S an adequate semigroup if E(S) is a semilattice. El-Gallali and Fountain [6] term S a quasi-adequate semigroup if E(S) is a subsemigroup. If, furthermore, L is a congruence relation on E(S), we term S a generalized L*-unipotent semigroup. El-Gallali and Fountain [5], term a congruence g on S good if a L*b implies agl*bg and aR*b implies agR*bg.

In section 1, we give a structure theorem for super quasi-adequate semigroups S (Theorem 1.11). We first specialize the above mentioned results of Fountain to super quasi-adequate semigroups S. In particular, S is a semilattice Y of semigroups $(S,:,\in Y)$ where S,=T,X E(S,) (algebraic direct product) where T, is a cancellative monoid and E(S,) is a rectangular band (Lemma 1.1). For (g;i,j), $(h;r,s)\in S$, define $(g;i,j)\delta(h;r,s)$ if (g;i,j), $(h;r,s)\in S$, say, and g=h. Then, δ is the minimum adequate good congruence on S (Proposition 1.3) and S/δ is a strong semilattice Y of the T, (Lemma 1.4). Then, S' divides $Vo(\widehat{S/\delta})^i$ where V is an L-trivial and idempotent monoid, o is wreath product, f is the Rhodes expansion, f is a semilattice Y of left cancellative semigroups f is a semigroups f is a semilattice Y of right zero semigroups, f becomes

the smallest inverse semigroup congruence on S, T, becomes a maximal subgroup of S, and $X_v \times T_v \times E(X_v)$ (algebraic direct product) (see Lemma 1.12). Hence, Theorem 1.11 is a superabundant semigroup analogue to our structure theorem for orthodox unions of groups [26].

In section 2, we give a structure theorem for super generalized L*-unipotent semigroups $S(Theorem\ 2.4)$. We first show that $\delta \cap L$ is the smallest L*-unipotent good congruence on S and $S/\delta \cap L$ is a semilattice Y of the semigroups $((T_y \times J_y):, \in Y)$ were J_y is an R-class of $E(S_y)$ (Proposition 2.1). Then,

 $S \leq W^{\iota} \circ (E(S)/L)^{\iota} \circ (S/\delta \cap L)^{\iota}$

(S means "is embedded in") and S/6AL

\$ (S/&\(\rho\)' \(\frac{\rho}{\rho}\)' \

W is a lower partial chain Y of left zero subsemigroups of E(S), e is the smallest adequate good congruence on S/6NL, S/6NL/e is a strong semilattice Y of the T,, and o is reverse wreath product (Theorem 2.4). An orthodox semigroup S is termed generalized Lunipotent if L is a congruence relation on E(S). If S is a generalized L-unipotent union of groups, 6NL becomes the smallest L-unipotent congruence on S. Hence, Theorem 2.4 is a superabundant analogue to our structure theorem for generalized L-unipotent unions of groups [24].

In section 3, we show that if S is a super R*-unipotent semigroup, then $SS(E(S))^{1}o(S/\delta)^{1}$ where E(S) is a semilattice Y of left zero semigroups (Theorem 3.1). Theorem 3.1 is a

superabundant analogue to our structure theorem for R-unipotent unions of groups [24].

Abundant semigroup analogues to many theorems in regular semigroup theory have been given by Fountain ([8],[9]), El-Qallali and Fountain ([5],[6]), and El-Qallali [7].

We have studied the structure of generalized L-unipotent semigroups in ([21],[22],[23],[24]), R-unipotent semigroups have been studied extensively by many authors - most recently by Szendrei ([14],[15]).

A submonoid of a monoid S is a subsemigroup of S containing the identity of S.

A semigroup (monoid) S is said to divide a semigroup (monoid) T if there exists a homomorphism of a subsemigroup (submonoid) of Tonto S. We also say T covers S in this case and write S<T. If there exists an isomorphism of S into T, we write S<T. R, L, H, D and J will denote Green's relations and E(S) will denote the set of idempotents of a semigroup S.

See [9] for the definition of J*. If S is a regular semigroup $J^*=J$.

We adopt the following notation and definitions from [24, p.181-182]: S'(S with appended identity), S', wreath product "o" of semigroups, reverse wreath product "o" of semigroups, type A semigroup congruence (for example, inverse semigroup congruence), a@(aes, a semigroup)(e, a congruence on S, will also denote the natural homomorphism of S onto S/e), and unions of groups.

For other definitions not given in this paper, see [2] or [10]. We also adopt the notation of [2] unless otherwise specified.

A monoid S is termed L-trivial and idempotent if each Lclass of S is a singleton and S is a band.

Section 1 - The Structure of Super Quasi-Adequate Semigroups

In this section, we describe the minimum adequate good congruence & on a super quasi-adequate semigroup (Proposition 1.3 and Lemma 1.4) and give a structure theorem for super quasi-adequate semigroups (Theorem 1.11)

Let S be a semigroup. For $_* \in S$, L_* or $L_* \circ (S)$ (in case of ambiguity) will denote the L^* -class of S containing $_*$ (notation of $\{9\}$).

Let S be a semigroup and I and J be sets and let P:J \times I \rightarrow S with (j,i) P=p,i. Let M(S,I,J,P) denote S \times I \times J under the multiplication $(a;i,j)(b;i,j) = (a p_j,b;i,i)$. We term M(S,I,J,P) a Rees Matrix semigroup over S with entries in P.

The following lemma gives the "gross" structure of super quasi-adequate semigroups.

Lemma 1.1. A semigroup S is super quasi-adequate if and only if S is a semilattice Y=S/J* of semigroups $(S, :, \in Y)$ where S, = T, XE(S,) where T, is a cancellative monoid and E(S,) is a rectangular band, $L_**(S) = L_**(S,)$ and $R_**(S) = R_**(S,)$ for $, \in Y$ and $.\in S$, and E(S) is a semilattice Y of rectangular bands $(E(S,):, \in Y)$.

Proof. Utilizing [9, Theorem 6.8 and its proof and Corollary 5.2], we obtain the above theorem (except the statement about E(S)) with $S_r = M(T_r, I_r, J_r, P_r)$, a Rees matrix semigroup over a cancellative monoid T_r where the entries of P_r are units U of T_r . As is easily shown, [2,Lemma 3.6] is valid for the above matrix semigroups if we require the mappings to have range U. Using this Lemma, we may "normalize" P_r such that all the elements in a given row and a given column are the identity e of T_r . Then, using the assumption that E(S) is a subsemigroup, we may show P_r = P_r for all P_r = P_r and P_r = P_r

To show δ is a congruence relation (Proposition 1.3), we will need the following lemma.

Lemma 1.2, Let S, * T, X E, and S. * T, X I. X J. where T, and T. are cancellative monoids, E, is a rectangular band, I. is a left zero semigroup, and J. is a right zero semigroup. Assume these exists

- a) a left répresentation . → \ of S, b, transformations of I.
- b) a right representation a -> (a of S, by transformations of J,
- c) a homomorphism Ø of T, into T.,

Define a binary operation on S, U S, extending the given ones on S, and S, by defining products of $a = (a,e) \in S$, and (b;i,j) $\in S$, as follows:

 $(a,e)(b;i,j) = (a0b; \lambda_A i,j)$ $(b;i,j)(a,e) = (b(a0); i, j\rho_A).$ Then, S, U S, becomes a semigroup with S, an ideal.

Conversely every possible binary associative operation on S, U S. extending the given ones on S, and S., and such that S, is an ideal, can be constructed in the above manner.

Proof. Lemma 1.2 has been established by Clifford [3, Lemma 2.5] in the case T, and T, are groups. Clifford's proof is easily seen to be valid when T, and T, are just cancellative monoids.

Proposition 1.3 Let S be a super quasi-adequate semigroup.

Then, & is the minimum adequate good congruence on S.

Proof. We first show that δ is a congruence relation on S. Let $\overline{\delta}$ denote the smallest congruence on S containing δ . Suppose a $\overline{\delta}$ b. Then, there exists a = a₁, a₂,..., a_n = b \in S such that a_i = x_iu_iy_i, a_{i·i} = x_iv_iy_i where x_i,y_i \in S¹ and (u_i,v_i) \in δ for 1 \leq i \leq n-1. Let x_i = (w;i,j). \in S₀, y_i = (h;r,s). \in S₀, u_i = (g;m,n)., and v_i = (g;c,d). Hence, a_i = (A;p,q)... \in S₀, and a_{i·i} = (B;k,1)... \in S₀... say. Let θ = Thus,

(A;p,q). * (w,i,j).(g;m,n).(h;r,s).

 $(B;k,1)_* = (v;i,j)_*(g;c,d)_*(h;r,s)_*$

Multiply both of the above equations on the left and right by (e;p,q), where e is the identity of T_{\bullet} .

Hence,

 $(A;p,q)_{\bullet} = (\overline{W};\overline{1},\overline{j})_{\bullet}(g;m,n)_{\bullet}(\overline{h};\overline{r},\overline{s})_{\bullet}$ $(B;p,q)_{\bullet} = (\overline{W};\overline{1},\overline{j})_{\bullet}(g;c,d)_{\bullet}(\overline{h};\overline{r},\overline{s})_{\bullet}$

say,

Using Lemma 1.2

 $(A;p,q)_{\bullet} = (\overline{W}(g\omega_{r,\bullet});\overline{i},\overline{j}\varrho_{(a;a,n),r})_{\bullet}(\overline{h};r,s)_{\bullet} = (\overline{W}(g\omega_{r,\bullet})\overline{h};\overline{i},s)_{\bullet}.$

where $\omega_{\tau,\bullet}$ is the homomorphism of T, into T, given by Lemma 1.2 and $(B;p,q)_{\bullet}=(\overline{W}(g\omega_{\tau,\bullet});\overline{1},\overline{j}\varrho_{\bullet,\bullet,\bullet,\tau})_{\bullet}(\overline{h};r,s)_{\bullet}=(\overline{W}(g\omega_{\tau,\bullet})\overline{h};\overline{1},s)_{\bullet}.$ Hence, A=B. Thus a, δ a, ... for 1 \leq 1 \leq n-1. Hence, a δ b. Thus, $\overline{\delta}$ = δ , and, hence, δ is a congruence on S.

Let aES and let a*, a*EE(S) such that a*R*a and a*L*a. Using [9, Corollary 6.2 and Proposition 6.5] and Lemma 1.1, a*, a*, a*, aES,, say. Hence, using [6, Corollary 2.4 and Proposition 2.6], & is the minimum adequate good congruence on S.

Lemma 1.4, Let S be a super quasi-adequate semigroup. Then, S/δ is a strong semilattice Y of cancellative monoids $(T_y; y \in Y)$.

Proof. Let (g;i,j) denote the δ - class of S containing (g;i,j). Since $(g;i,j)\tau=g$ defines a 1-1 map of S/& onto $T=U(T,:,\in Y)$, T becomes a groupoid under the multiplication ab=(aτ-1bτ-1)τ and τ defines an isomorphism of S/δ onto T. If $g, h \in T_{\gamma}, g, h = ((g; i, j)(h; k, e))\tau = (gh; i, e)\tau = gh(the last product$ is multiplication in T,). Hence, T is a semilattice Y of cancellative monoids (T,:, ∈Y). For a∈T, and ,≥y, define a Ç,, = se, where e, is the identity of T,. It is routine to verify that $\varsigma_{*,\,\,*}$ is a homomorphism of T_* into T_* , $\varsigma_{y\,,\,y}$ is the identity map on T,, and, for aET,, bET,, ab=ac,,,,bc,,,. Using the fact that the idempotents of T commute by Proposition 1.3, its easily seen that Ç,,,Ç,,,=Ç,,, for ,2,2, . Hence, T is a strong semilattice $\varsigma(Y;T_y;\varsigma_y, _z)$ of cancellative monoids (notation of [10]). We identify S/δ and T.

We next describe the Rhodes expansion \widehat{S} of an arbitrary semigroup S (see [17] and [13]). The Rhodes expansion and certain

of its properties will be crucial in developing our structure theory of super quasi-adequate semigroups. If a, bes, asb means aUSasbUSb and a beans asb but a b. Let S. = $\{(s_n, \ldots, s_i): s_i \in S \}$ for isisn and $s_i \leq s_i \leq \ldots \leq s_n$. If $x = (s_n, \ldots, s_i)$, $y = (t_n, \ldots, t_i)$ define $xy = (s_n t_n, \ldots, s_i t_n, t_n, \ldots, t_i)$. Then, S. is a semigroup under this multiplication. If $a = (s_n, \ldots, s_i) \in S$, and $s_{k+1} L s_k$ for some $1 \leq k \leq n-1$ delete s_k to obtain $s_i \in S$, and denote the deletion by $a \implies a_i$. Perform $a \implies a_i \implies \ldots \implies a_k$ where $a_k = (s_n, s_{n+1}, \ldots, s_{n+1})$ with $s_n \leq s_{n+1} \leq \ldots \leq s_{n+1}$ (such an a_k is termed an irreducible element of $s_i \leq s_i \leq s_i$. Write $s_k = s_k \leq s_i \leq s_i \leq s_i$. S is termed the Rhodes expansion of $s_i \leq s_i \leq s_$

Lemma 1.5. Let S be a super quasi-adequate semigroup. Then, \hat{S} is a semilattice Y of subsemigroups (F,:, \in Y) where F, = ((a,,a,-...,a,):a, \in S,,a, \in S) and $E(\hat{S})$ is the semilattice Y of rectangular bands

 $E(F_y) = \{((e_y; i, j), a_{n-1}, ..., a_i) : (e_y; i, j) \in E(S_y), a_j \in S\}.$

U= $(\widehat{S/\delta})$ is a semilattice Y of left cancellative semigroups with idempotent $(X,:,\in Y)$ where $X_* = \{(a_n,a_{n-1},\ldots,a_1):a_n\in T,a_1\in S/\delta\}$. E(U) is a semilattice Y of right zero semigroups $(E(X,):,\in Y)$ where $E(X,) = \{(e_1,a_{n-1},\ldots,a_1):e_1,\ldots,e_n\}$ the identity of T_* , T_* , T_* , T_* , and T_* , and T

To establish the second sentence of the lemma, utilize Proof. Lemma 1.1 and [16, Lemma 6.7] (see also [17, Lemma 11.4] and [24, Theorem 3.1(f)}). Utilizing Lemma 1.4 and [24, Theorem 3.1(f)], it is easily checked that U is a semilattice Y of the semigroups (Xy:, EY) and that the fourth sentence of the lemma is valid. We next show X_y is left cancellative for , $\in Y$. Let (x_r, x_r) $1, \dots, X_1$), $(a_n, a_{n-1}, \dots, a_1)$, and $(b_n, b_{n-1}, \dots, b_1)$ be elements of X_y and suppose that $(x_r, x_{r-1}, \dots, x_i), (a_n, a_{n-1}, \dots, a_i) = (x_r, x_{r-1}, \dots, x_i)$ $1, \dots, x_1$). $(b_n, b_{n-1}, \dots, b_1)$. Hence, red(x, a, , x, _ $1a_{n}, \dots, x_{1}a_{n}, a_{n}, a_{n-1}, \dots, a_{1}) = red(x_{n}b_{n}, x_{n-1}b_{n}, \dots, x_{1}b_{n}, b_{n}, b_{n})$, b.). Thus, x, a, =x, b.. Hence, since T, is a cancellative semigroup, $a_n = b_n$. Thus, n = s and $a_i = b_i$ for $1 \le i \le n$. sentence of the lemma is a consequence of [16, Proposition 6.6] (see also [17] and [24, Theorem 3.11(b)]).

In the remainder of this section, S will denote a super quasi-adequate semigroup.

If A is a semigroup and $a=(a_n,\ldots,a_n)\in \widehat{A}$, let |a|=n. We term lat the length of a.

Lemma 1.6, If $z \in \hat{S}$, $|z| = |z\hat{\delta}|$

Proof. Let $z=(a_n,a_{n-1},\ldots,a_1)$. Suppose $a_{k+1}\delta La_k\delta$ for some $1\le k\le n-1$. Using Lemma 1.1, let $a_{k+1}=(g_{k+1},i_{k+1},j_{k+1})\in S_y$, say, and $a_k=(g_k;i_k,j_k)\in S_z$, say. Thus, $a_{k+1}\delta=g_{k+1}\in T_y$ and $a_k\delta=g_k\in T_z$, and, hence, $g_{k+1}Lg_k$ (in S/δ). Using Lemma 1.4, it easily seen that y=z and $g_{k+1}=p_{k}$ where p_k is a unit of p_k . Since $p_k=(a_k,a_{k+1})=(a_k,a_{k+1}$

 $(g_k;i_k,j_k)=(\mu^{-1};i_k,j_k),(g_{k+1};i_{k+1},j_{k+1}),\quad \text{Hence,} \quad a_{k+1}La_k,\quad a \\ \text{contradiction.} \quad \text{Thus,} \quad \text{red}(a_k\delta,a_{k-1}\delta,\ldots,a_1\delta)=(a_k\delta,a_{k-1}\delta,\ldots,a_1\delta) \\ \text{and} \quad |z|=|z\delta|.$

For $EU=(\widehat{S/\delta})$, let $U_*=\{x\in U:_*x=_*\}$ Lemma 1.7. For $t\in U$, $U_*\widehat{\delta}^{-1}\leq E(\widehat{S})$. If $E(X_*)$, $U_*\widehat{\delta}^{-1}\leq U(E(F_*):_*2_*)$.

Proof. Let $s \in U_* \delta^{-1}$. Hence, $s \delta \in U_*$. Using an important theorem of Rhodes [13, Theorem A.1V.1], $(s \delta)^{(1)} = (s \delta)^{(1)}$. Let $s = (s_n, s_{n-1}, \ldots, s_n)$. Then, $s \delta = (s_n \delta, s_{n-1} \delta, \ldots, s_n \delta)$. If $s_n = (g; i, j) \in S_r$, $s_n \delta = g \in T_r$. Thus, $pr_1(s \delta)^{(1)} = g^{(1)} = g^{(1)}$ and $pr_1(s \delta)^{(1)} = g^{(1)}$. Let e denote the identity of T_r . Thus, since T_r is a cancellative monoid, $g^{(1)} = g^{(1)}$ g implies e = g. Hence, $s_n \in E(S)$. Thus, using [24, Theorem 3.1(f)], $s \in E(\widehat{S})$. Hence $U_* \delta^{-1} \leq E(\widehat{S})$. The last sentence of the lemma is a consequence of the definitions of U_* and δ , Lemma 1.5, and the first sentence of the lemma.

If we replace "0" by "6", "X," by F,", "G," by "T,", and "U," by "X," in [26, Lemma 5, Lemma 7, Lemma 8, Lemma 9, Lemma 11] (if U, $\hat{\delta}^{-1} \neq 0$ and the last sentence is omitted), Lemma 12, Lemma 13, the first two sentences of Lemma 15, Lemma 16, Lemma 17, and Lemma 18 (with "and ... Y" omitted)), these lemmas are valid for quasi-adequate semigroups S. The proofs of these modified lemmas are the same as the proofs of the original lemmas in [26] except that we replace Lemma 1 of [26] by Lemmas 1.1, 1.4, and 1.5 and Proposition 1.3; Lemma 2 of [26] by Lemma 1.6; and Lemma 6 of [26] by Lemma 1.7 in the proofs of the original lemmas. Using

Lemmas 1.1,1.4 and 1.5, Proposition 1.3, Lemma 1.6, [26, Lemma 3], Lemma 1.7, and the modified Lemmas, we obtain

Lemma 1.8. If $U, \hat{\delta}^{-1} \neq 0$, then $U, \hat{\delta}^{-1}$ is a chain $\tilde{P}_{1,1}$ of rectangular bands $(W, :, \in \tilde{P}_{1,1})$ where $\tilde{P}_{1,1}$ is a sub-chain of $P_{1,1,1} = \{1, 2, \ldots, |\cdot|\}$ under the reverse of the usual order. Furthermore, every element of W, has length $p_{1,1}$.

Let $_{\xi} \in X_y$ and suppose that $|_{\xi}|_{=_R}$. If $x,y \in U_{\varepsilon} \hat{\delta}^{-1}$, define $x\sigma'y$ if and only if ax=ay for all a $\in W_{\varepsilon}$ where $_R$ is the least element of \widetilde{P}_R .

If we make the usual modifications and furthermore replace " σ " by " σ '", [26, Lemma 21 and Lemma 23] are valid for super quasi-adequate semigroups S. The proofs also remain valid of we replace " σ " by σ ', " ξ " by " δ ", k by \overline{k} , and Lemma 7 by modified Lemma 7 if we note that e,Lg, (notation of [26, Lemma 23]) by virtue of the modified Lemma 5.

Lemma 1.9. If $U_* \hat{\delta}^{-1} \neq 0$, L is a congruence relation on $U_* \hat{\delta}^{-1}$.

Hence, $U_* \hat{\delta}^{-1} / L$ is a chain \tilde{P}_{1+1} of right zero semigroups $(W_1 / L_*, \in \tilde{P}_{1+1})$.

Proof. Replace "δ" for "¢", Lemmas 21 and 23 by their modifications, and Lemma 1.8 for Lemma 20 in the proof of [26, Lemma 24].

Let, be a homomorphism of a monoid S onto a monoid T, we define a category R_{τ} as follows: obj $R_{\tau}=T$. For t_1 , $t_2\in T$, $R_{\tau}(t_1,t_2)=((t_1,s,t_2):s\in S$ and $t_2=t_1(s_{\tau})$. For $(t_1,s_1,t_2)\in R_{\tau}(t_1,t_2)$ and $(t_2,s_2,t_3)\in R_{\tau}(t_2,t_3)$, we define the composition $(t_1,s_1,t_2)(t_2,s_2,t_3)=(t_1,s_1s_2,t_3)$. It is easily checked that

(t₁, s_1 , s_2 , t_3) $\in \mathbb{R}_r$ (t₁, t₃) and the composition is associative where defined. The identity arrow of \mathbb{R}_r (t, t) is (t, 1, t) where 1 is the identity of S. So, R. is a category. Let α be a congruence on S and for (t₁, s_1 , t_2), (t₁, s_2 , t_3) $= \mathbb{R}_r$ (t₁, t_2) define (t₁, s_1 , t_2) $= \mathbb{R}_r$ (t₁, t₂) and only if $= \mathbb{R}_r$ (t₁, t₂) and $= \mathbb{R}_r$ (t₁, t₂). Then, by [26, Lemma 25], r is a congruence on the category R_r. Let D_r**R_r/r. Following Tilson [18], we term D_r* the derived category of $= \mathbb{R}_r$. Let [t₁, $= \mathbb{R}_r$, t₂] $= \mathbb{R}_r$ (t₁, t₂) denote the r-class of R_r containing (t₁, $= \mathbb{R}_r$, t₂) $= \mathbb{R}_r$ (t₁, t₂). We define $= \mathbb{R}_r$ (in $= \mathbb{S}_r$) if $= \mathbb{R}_r$ (t₁, t₂). We define $= \mathbb{R}_r$ (in $= \mathbb{S}_r$) if $= \mathbb{R}_r$ (t₁, t₂).

Lemma 1.10. For (S/δ) , $\{1, 1, 2, 3, 3\}$ and $\{1, 1, 2, 3, 4\}$ onto $\{1, 1, 2, 3, 4\}$.

Proof. Suppose $\text{sLz}(\textbf{s}, \textbf{z} \in \mathbb{U}, \hat{\delta}^{-1})$ Hence, using Lemma 1.8, $\textbf{s}, \textbf{z} \in \mathbb{W}_j$ for some $j \in \widetilde{P}_1$... Thus, using modified [26, Lemma 23], $\textbf{s} \in \mathbb{Z}$. Hence, $\textbf{x} \in \mathbb{Z}$ for all $\textbf{x} \in \mathbb{W}_k$ where $\textbf{s} = \textbf{l}_k \mid 1$. Since $\textbf{s} \in (\textbf{x} \hat{\delta}) = \textbf{s}_k$, $\textbf{s} \in (\textbf{s} \hat{\delta}) = \textbf$

 $x\hat{\delta}=(e_{\overline{x}},g_{\overline{x}-1},\ldots,g_{1}) \text{ where } g_{\overline{x}}Le_{\overline{x}}=e_{\overline{x}}^{*}. \text{ Hence, } u=(g_{x};i_{x},j_{x}),(g_{x}-i_{x};i_{x}-1,j_{x}-1),\ldots,(g_{1};i_{x},j_{x}),(g_{x}-i_{x};i_{x}-1,j_{x}-1),\ldots,(g_{1};i_{x},j_{x})) \text{ and } x=((e_{\overline{x}};i_{\overline{x}},j_{\overline{x}}),(g_{\overline{x}}:i_{\overline{x}}-i_{x},j_{\overline{x}}-i_{x}),\ldots,(g_{1};i_{1},j_{1})).$ Since $(g_{x};i_{x},j_{x}),(g_{\overline{x}};i_{\overline{x}},j_{x}) \text{ for } i_{x}<_{x}S_{x}, (g_{x};i_{x},j_{x})(e_{\overline{x}};i_{\overline{x}},j_{\overline{x}})=(g_{x};i_{x},j_{x}).$ Furthermore $(g_{\overline{x}};i_{x},j_{x})L(e_{\overline{x}};i_{x},j_{\overline{x}}). \text{ Hence, } \text{ by a routine } \text{ calculation, } ux=u. \text{ Thus, as above, } [\cdot,s,\cdot]=[\cdot,z,\cdot]. \text{ Conversely, assume } [\cdot,s,\cdot]=[\cdot,z,\cdot]. \text{ Hence, } s,z\in F_{x}, \text{ say and } xs=xz \text{ for all } x\in_{x}\hat{\delta}^{-1}. \text{ Using } [26, \text{ Lemma } 22], \text{ siz or } ziss. \text{ Using Lemma } 1.7, \text{ sz}=s \text{ or } zs=z. \text{ Since } s,z\in W_{y} \text{ for some } j, \text{ sLz in either case. Thus, } [\cdot,s,\cdot]^{\pi=sL}(s\in U,\hat{\delta}^{-1}) \text{ defines a } 1-1 \text{ map of } D_{x}^{2}(\cdot,\cdot) \text{ into } (U,\hat{\delta}^{-1}).$ into $(U,\hat{\delta}^{-1})^{1} \text{ Clearly, } \tau \text{ is a surjection. Using Lemma } 1.9, \tau \text{ is an isomorphism.}$

Theorem 1.11. Let S be a super quasi-adequate semigroup. Then,
(1) $S^{\iota} < Vo(\hat{S}/\delta)^{\iota}$

where V is an L-trivial and idempotent monoid. δ is the minimum adequate good congruence on S, (S/δ) is a semilattice Y=S/J· of left cancellative semigroups $(X,:,\in Y)$ with idempotents, and $E((S/\delta))$ is a semilattice Y of right zero semigroups $(E(X,):,\in Y)$. Proof. Utilize Lemma 1.5 (define $1\delta=1$), Lemma 1.10, [26, Lemma 29], and [26, Theorem 26] to establish (1). To complete the proof utilize Proposition 1.3 and Lemma 1.5.

Remark 1.12 If E is the edge set of the graph obtained from $D_{\star}^{\lambda\lambda}$ by removing the identity arrows, then V is the free monoid over E relative to the equation $xyx=yx(x,y\in E^{\iota})$ (see [26]-especially the proof of [26, Lemma 29]). V is a semilattice A (set of all finite subsets of E under union) of right zero

semigroups (Up:PEA) where Up denotes the set of all elements of V with content P(see[2],[10] and [26,especially Theorem 27])

Lemma 1.12. $X_y = C_y \times E_y$ where C_y is a cancellative monoid and E_y is a right zero semigroup if and only if T_y is a group. In the case, $X_y = T_y \times E(X_y)$.

Proof. Suppose $X_y = C_y$ $X = E_y$. Then, Using [19, Theorem 21, a $\in aX_y$ for all a $\in X_y$. Thus, $(a_n) = (a_n) = for$ some e $\in X_y$. Hence, $(a_n) = (a_n) e^a$. Thus, using Lemma 1.5, $e = e^a$. Hence, using Lemma 1.5, $(a_n) = (a_n) (e_y, x_{k-1}, \dots, x_1)$ where e_y is the identity of T_y . Thus, $(a_n) = red(a_n, e_y, x_{k-1}, \dots, x_1)$. So, $a_n = e_y$. Hence, using Lemma 1.4, $e_y = sa_n$ where s may be taken as an element of T_y . Thus, $a_n = sa_n = e_y = sa_n = se_y$. So, $a_n = e_y$ and, hence, T_y is a group. Conversely, suppose T_y is a group. Let $(a_n, a_{n-1}, \dots, a_1) \in X_y$. Then, $(a_n, a_{n-1}, \dots, a_1) = (a_n) (e_y, a_{n-1}, \dots, a_1)$. Since $(a_n) (b_n) = (a_n b_n)$ for a_n , $b_n \in T_y$, $T_y \cong ((a_n : a_n \in T_y)$. Thus, it is easily checked that every element of X_y may be uniquely expressed in the form (a) where $a \in T_y$ and $e \in E(X_y)$ and $(a, e) \Rightarrow (a)$ defines an isomorphism of $T_y \times E(X_y)$ onto X_y .

Remark 1.13. In the case S is an orthodox union of groups in Theorem 1.11, δ becomes the minimum inverse semigroup congruence on S, J*=J and X,=T, X E(X,) where T, is a maximal subgroup of S (hence, X, is a right group). These facts are a consequence of Proposition 1.3, Lemma 1.1, and Lemma 1.12. In this case, the structure of $(\widehat{S/\delta})$ is further refined by [25, Theorem 2.61(see also [26, Theorem 31]).

Section 2. The Structure of Super Generalized L*-unipotent Semigroups.

In this section, we describe the smallest L*-unipotent good congruence on a super generalized L*-unipotent semigroup (Proposition 2.1) and give a structure theorem for super generalized L*-unipotent semigroups (Theorem 2.4).

Proposition 2.1. Let S be a super generalized L*-unipotent semigroup. Then, $\delta \cap L$ is the smallest L*-unipotent good congruence on S. S/ $\delta \cap L$ is a semilattice Y*S/J* of semigroups (M,:, \in Y) where M,=T, X J, where T, is the cancellative monoid of Lemma 1.1 and J, is an R-class of E(S,). E(S/ $\delta \cap L$) is a semilattice Y of the right zero semigroups (J,:, \in Y).

Proof. We first show that $\delta \cap L$ is a congruence relation on S. Utilizing Proposition 1.3, $\delta \cap L$ is a right congruence relation on S. Let $\overline{\delta \cap L}$ be the smallest congruence relation on S containing $\delta \cap L$. We will show that $\delta \cap L = \delta \cap L$. Suppose a $(\overline{\delta \cap L})$ b. Then, there exists $a = a_1, a_2, \ldots a_n = b \in S$ such that $a_i = x_i u_i$, $a_{i+1} = x_i v_i$ where x_i $y_i \in S^i$ and $(u_i, v_i) \in \delta \cap L$ for $1 \leq 1 \leq n-1$. Let $x_i = (g; i, k), \in S_i$, $u_i = (w; s, j)_{\lambda} \in S_{\lambda}$, and $v_i = (w; t, j)_{\lambda} \in S_{\lambda}$. Since δ is a congruence relation, $a_i = (m; p, q)_{\tau \lambda}$ and $a_{i+1} = (m; i, d)_{\tau}$, say. Let $a = x_{\tau \lambda}$. Then, $a_i = a_{\tau \lambda} = a_{\tau \lambda}$. Hence, $(m; p, q)_a = (g; i, k)_{\tau} (e_{\tau}; i, k)_{\tau} (e_{\lambda}; s, j)_{\lambda} (w; s, j)_{\lambda}$ and $(m; c, d)_a = (g; i, k)_{\tau} (e_{\tau}; i, k)_{\tau} (e_{\lambda}; t, j)_{\lambda}$ (w; s, j) where e_{τ} is the identity of T_{τ} .

Since L is a congruence relation on E(S), $(e_\tau;i,k)$, $(e_\chi;s,j)_\chi$ L(e_{\tau};i,k), $(e_\chi;i,k)$, $(e_\chi;i,k)$, $(e_\chi;i,k)$, $(e_\chi;i,k)$, $(e_\chi;i,k)$, $(e_\chi;i,j)_\chi = (e_\star;i',j')_\star$, say. Hence,

 $(m; p, q)_{*} = (g; i, k)_{*} (e_{*}; s', j')_{*} (w; s, j)_{\lambda}$ $(m; c, d)_{*} = (g; i, k)_{*} (e_{*}; t', j')_{*} (w; s, j)_{\lambda}$

Since L is a right congruence relation on S, $(e_*;s',j')_*(w;s,j)_{\lambda}$. Hence, $(e_*;s',j')_*(w;s,j)_{\lambda}$ = $(w^*;s^*,j^*)_*$ and $(e_*;t',j')_*(w;s,j)_{\lambda}$ = $(\overline{w};\overline{s},j^*)_*$, say. Thus, $(m;p,q)_*=(g;i,k)_*(w^*;s^*,j^*)_*$

(m;c,d) = (g;i,k), (w;s,j*),.

Hence,

(e_;p,q)_(m;p,q)_=(e_;p,q)_(g;i,k),(w*;s*,j*)_ (e_;p,q)_(m;c,d)_=(e_;p,q)_(g;i,k),(w;s,j*)_.

Suppose that $(e_*;p,q)_*(g;i,k)_* = (\overline{g};\overline{i},\overline{k})_*$. Then, $(m;p,q)_* = (\overline{g};\overline{i},\overline{k})_*(v^*;s^*,j^*)_*$

 $(m; p, q)_{*} = (\overline{g}; \overline{1}, \overline{k})_{*} (\overline{v}; \overline{s}, j^{*})_{*}$

Hence, $q=d=j^*$. Thus, $a_1(\delta\cap L)a_{1,1}$ for $1\leq i\leq n-1$. Hence, $a(\delta\cap L)b$ and, thus $\delta\cap L=\overline{\delta\cap L}$.

We will need to show that $\delta \cap L^* = \delta \cap L$. Suppose $a(\delta \cap L^*)b$. Since $a\delta b$, $a=(g;i,j)_a \in S_a$ and $b=(g;r,s)_a \in S_a$, say. There exists an oversemigroup S^* of S such that $s(g;i,j)_a = (g;r,s)_a$ where $s\in S^*$. Hence, $(g;r,s)_a (e_a;i,j)_a = (g;r,s)_a$.

Thus, j=s. Hence, a($\delta \cap L$)b. Thus, $\delta \cap L^* \leq \delta \cap L$. Since $L \leq L^*$, $\delta \cap L^* = \delta \cap L$.

We next show that $\delta \cap L$ is a good congruence. We will use [5, Corollary 1.5]. Suppose aL*e where eEE(S). Let $ax(\delta \cap L)$ ay where $x, y \in S^1$. Thus, $ax(\delta \cap L^*)$ ay. Since aL*e, axL^*ex and ayL^*ey . Thus, exL^*ey . Using [5, Corollary 1.5] and Proposition 1.3, $ex\delta ey$ for some $e^* = e \in L^*e$. Thus, $ex(\delta \cap L^*)$ ey. Hence, $ex(\delta \cap L)$ ey. Next, let aR^*e

where $e \in E(S)$. Assume $xa(\delta \cap L)ya$ where $x, y \in S^1$. Thus, xa=(h;m,n), and ya=(h;p,n). Say. Let $f=(e_y;m,n)$. Then, xa=fya. Hence, fxa=fya. Thus, using [11, Lemma 1.7], fxe=fye. Since xaR^*xe and yaR^*ye , it is easily seen that xe, ye, and $f \in S_a$. Hence fxe=fye implies $xe(\delta \cap L)ye$. Thus, $\delta \cap L$ is a good congruence on S by [5, Corollary 1.5].

We next show that $S/\delta \cap L$ is an L^* -unipotent semigroup. Using [6, Proposition 1.6], $S/\delta \cap L$ is a quasi-adequate semigroup. Using [6, Lemma 1.5], $E(S/\delta \cap L) = \{e(\delta \cap L) : e \in E(S)\}$. Suppose $e(\delta \cap L) \cup Lf(\delta \cap L)$ (in $E(S/\delta \cap L)$). Thus, $(ef,e) \in \delta \cap L$ and $(fe,f) \in \delta \cap L$. Hence, $e,f \in S$, say. Thus, e=ef=e=ef. Hence, $e(\delta \cap L)f$. Thus, $S/\delta \cap L$ is an L^* -unipotent semigroup.

Let ℓ be an L*-unipotent congruence on S. Suppose $a(\delta \cap L)b$. Then, a=(g;m,n), and b=(g;p,n), say. Thus a=(e,m,n), b. Since (e,m,n), L(e,p,n), (e,m,n), $\ell=(e,p,n)$, Hence, $a\ell=(e,m,n)$, $\ell=(e,p,n)$, $b\ell=b\ell$. Thus, $\delta \cap L \leq p$. Thus, $\delta \cap L \leq p$ smallest L*-unipotent congruence on S.

Using Lemma 1.1, $S_y=T_y \times I_y \times J_y$ (algebraic direct product) where I_y is a left zero semigroup and J_y is a right zero semigroup. Let $M_y=T_y \times J_y$ (algebraic direct product). Let (g;i,j) denote the $\delta \cap L$ -class of S containing (g;i,j). Then, $(g;i,j) \times I_y = (g,j)$ defines a 1-1 mapping of $S/\delta \cap L$ onto $M=U(M_y:y\in Y)$. In a similar manner to the proof of Lemma 1.4, we may define a multiplication on M such that M is a semilattice Y of the semigroups $(M_y:y\in Y)$ and $M\cong S/\delta \cap L$. The last sentence follows since E(M) is a semigroup.

Remark 2.2 will be used in the proof of Theorem 2.4.

Remark 2.2. Let 0 be a homomorphism of a semigroup S onto a semigroup T. Define $D(\theta) = \{(t, s, t(s\theta)) : t \in T ; s \in S\} \cup \{0\} \text{ under the } \{0\}$ multiplication $(t_1,s_1,t_1(s_1\theta))(t_s,s_s,t_s(s_s\theta))=(t_1,s_1s_s,t_1(s_1s_s)\theta)$ t, (s, 8)=t,; 0 if t1 (8,8) #ta and O(t,s,t(s0))=(t,s,t(s0))O=O.O=O.D(0) was termed the derived semigroup of θ by its inventor Bret Tilson (see[16] and [17]). Let \emptyset be a mapping of $D(\theta)-\{0\}$ into a semigroup P. Following Rhodes [13, Definition A.I.2.1, p.94], we term $\emptyset:D(\theta) \longrightarrow \{0\} \longrightarrow P$ a parametrization of D(8) if 1) Ø is a partial homomorphism of $D(\theta)=\{0\}$ into $P(i.e. if x, y\in D(\theta)=\{0\}$ and $xy\neq 0$, then $x\theta y\theta=(xy)\theta$) 2) satisfies the embedding condition: and s, 0=s, 0 $(t,s_1,t(s_1\theta))\theta = (t,s_2,t(s_2\theta))\theta$ for all $t\in T^*$ implies $s_1=s_2$. For brevity, we also term P a parametrization of D(0). Using [13, Proposition AI.2.3], SSPoT where pIS=0 (p is the projection if PoT onto T). Following Rhodes [13], we define $D^{a}(\theta)$ (dual derived semigroup) as follows: $D^*(\theta)=(((s\theta)t,s,t):s\in S,t\in T')\cup\{0\}$ under the multiplication $((s_1\theta)t_1,s_1,t_1)((s_2\theta)t_2,s_2,t_2)=((s_1\theta)t_1,s_1s_2,t_2)$ if $t_1 = (s_2\theta)t_2$; 0 if $t_1 \neq (s_2\theta)t_2$; 0((s\theta)t, s, t)=((s\theta)t, s, t)_0=00=0. A parametrization P* of D*(0) is defined as above and S≤T o P* with PIS=0.

Remark 2.3 will be needed for the statement of Theorem 2.4

Remark 2.3. Let W be a partial groupoid which is a union of a collection of pairwise disjoint subsemigroups $(T, :, \in Y)$ where Y is a semilattice. If a $\in T_v$, b $\in T_v$ and y $\in Z_v$ (in Y) imply ab is defined (in W) and ab $\in T_v$ and z $\in Z_v$ and c $\in Z_v$ imply (ab)c=a(bc), we term Wa

lower partial chain Y of the semigroups $(T_y:, \in Y)$. Let X be a semilattice Y of semigroups $(X_y:, \in Y)$ and let R and S be semigroups. For the definition of WoXoR and S\$\infty\$WoXoR, see [24, p.188 and p.189].

Theorem 2.4. Let S be a super generalized L*-unipotent semigroup. Then,

- (1) SSW'o(E(S)/L)'o(S/&AL)' where W is a lower partial chain Y=S/J' of left zero subsemigroups of E(S), E(S)/L is a semilattice Y of right zero semigroups, and &AL is the smallest L'-unipotent good congruence on S. Furthermore,
- (2) S/6NL ≤(S/6NL/e)'o(E(S)/L)' where e is the smallest adequate good congruence on S/6NL and S/6NL/e is a strong semilattice Y of cancellative monoids (T,:, EY)(T, is a cancellative subsemigroup of S).

Proof. We will first establish that $SS(E(S))^{\circ} \circ (S/\delta \cap L)^{\circ}$. For each (g,j), $EM_{s}(Q,EY)$ (Notation of Proposition 2.1), select a representative element $u_{(g,j)}$, in S_{s} . We first show that every element of S may be uniquely expressed in the form $w_{(e,g)}$, $f_{(g,g)}$

 $(*,*,*(*(\delta \cap L)))\theta = f(*,*)$. We will show that $\theta: D(\delta \cap L) = \{0\} = E(S)$ is a parametrization of D(&NL). It is easily checked that 9 defines a mapping of $D(\delta \cap L) = \{0\}$ into E(S). Next, we show that 9 defines partial homomorphism. Let (*, *, *, *, (*, (δΩΣ))), $(*_{*},*_{*},*_{*}(*_{*}(\delta \cap L))) \in D(\delta \cap L)$ with $*_{*}(*_{*}(\delta \cap L)) = *_{*}$. We must show $f(x_1,x_1)f(x_2,x_3) = f(x_1,x_1,x_3)$. Suppose $x_1 \in x_1 (\delta \cap L)^{-1}$ and $u_1 \in E_{x_1} (\delta \cap L)^{-1}$. Then, $u_{x_1} (s_1 s_2) = f(s_1, s_1 s_2) u_{x_1, x_2} u_{x_1, x_2} u_{x_2, x_2} u_{x_1, x_2} u_{x_2, x_2} u_{x_1, x_2} u_{x_2, x_2} u_{x_1, x_2} u_{x_2, x$ where $f(s_1, s_1, s_2) \in (s_1, s_2)^+ (\delta \cap L)^{-1}$. However, $(u_1, s_1, s_2) \in f(s_1, s_1, s_2) \in (u_1, s_2, s_2)$ $_{*_2}$)=f($_{*_1}$, $_{*_2}$)f($_{*_2}$, $_{*_2}$)u $_{*_2}$, Let $_{*_2}$ \in M, and $_{*_2}$ \in M, say. Hence, $_{*_1}$, $_{*_2}$ $EM_{y:}$. Furthermore, $*_{\lambda} * EE(M_{y})$ and $(*_{\lambda} *_{\lambda}) * EE(M_{y:})$. Using the last)*. Hence, $f(x_1,x_1)f(x_2,x_2)\in (x_1,x_2)^*(\delta\cap L)^{-1}$. Thus, $f(x_1,x_1)f(x_2,x_2)$ $, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot$), and, hence, θ is a partial homomorphism. We next show the embedding condition is valid. Let & denote the identity S/onL and let u.=1, the identity of S. Thus, ₌ (&∩L)=₌ (&∩L)=₌ and f(*,*,)=f(*,*,), then $u_1 = u_2 = f(e_1 + e_2) u_2 = f(e_1 + e_2) u_2 = u_2 = e_2$. Hence, E(S)is parametrization of $D(\delta \cap L)$. Thus, using Remark 2.2, $S \le E(S) \circ S/\delta \cap L$. If S has no identity consider S¹. Note that $a(\delta \cap L)_1(in S^1)$ implies a=. Hence, S'/ô∩L=(S/ô∩L)'. Furthermore, E(S')=(E(S))'. Hence, $S \le S^1 \le (E(S))^1 \circ (S/\delta \cap L)^1$. Thus utilizing [24, Theorem 1.24, Remark(1.24)', Lemma 1.23, and Lemma 1.25], we obtain(1). We next establish (2). Let M=S/6NL. Utilizing [9, Corollary 6.2 and Proposition 6.5], Proposition 2.1 and Lemma 1.4, M/o is the strong semilattice Y of cancellative monoids $(T, :, \in Y)$. If $\in T_y$, let .*=e,, the identity of T_{γ} . For each . $\in M/\rho$, select a

Remark 2.5. W is a lower partial chain Y of L-classes of E(S). Each J-class of E(S) contains precisely one of these L-classes (see[24, Theorem 1.24]).

Remark 2.6. Let S be a generalized L-unipotent union of groups. Then, $\delta \cap L$ is the smallest L-unipotent congruence on S (δ is the smallest inverse semigroup congruence on S), δ is the smallest inverse semigroup congruence on S/ $\delta \cap L$, T, is a maximal subgroup of S, and J*=J in the statement of Theorem 2.4. Thus, Theorem 2.4 generalizes [24, Theorem 1.27, Theorem 1.28, and Theorem 1.26] in the case S is also a union of groups (our structure theorem for generalized L-unipotent unions of groups).

A different type structure theorem for generalized R-unipotent unions of groups is given in [22, Theorem 4.7].

Section 3 <u>Super R*-unipotent Semigroups</u>

In this section, we give a structure theorem for super R*unipotent semigroups (Theorem 3.1)

Theorem 3.1. Let S be a super R*-unipotent semigroup. Thus,

* S\$(E(S))'o(S/\delta)' where E(S) is a semilattice Y*S/J* of left

zero semigroups, \delta is the smallest adequate good congruence on S,

and S/\delta is a strong semilattice Y of cancellative monoids

(T,:,\delta Y)(T, is a subsemigroup of S).

Proof, Using Lemma 1.1, $S_y=T_y$ χ $E(S_y)$ where $E(S_y)$ is a left zero semigroup. Hence, by a routine calculation, $\delta \cap L = \delta$. Thus, utilizing the proof of Theorem 2.4, * is valid. Use Proposition 1.3 and Lemma 1.4 to complete the proof.

Remark 3.2. Let S be an R-unipotent union of groups. Then, δ is smallest inverse semigroup congruence on S, T, is a maximal subgroup of S, and $J = J^*$ in the statement of Theorem 3.1. Hence, Theorem 3.1 generalizes [24, Remark 1.14, Theorem 1.12, and Theorem 1.8] (our structure theorem for R-unipotent unions of groups). A different type structure theorem for L-unipotent unions of groups is given in [22, Theorem 7.21.

References

- 1. G.L. Bailes, Right Inverse Semigroups, J. Algebra 26(1963), 492-507.
- 2. A.H. Clifford and G.B. Prestion, The Algebraic Theory of Semigroups, Math. Surveys Amer. Math Soc. 7, vol I (AMS, Providence, RI, 1961).
- 3. A.H.Clifford, <u>A Structure Theorem for Orthogroups</u>, J. Pure Appl. Algebra 8(1976), 23-50.
- 4. S. Eilenberg, Automata, Languages, and Machines, Vol B (Academic Press, New York, 1976)
- 5. A. El-Qallali and J. B. Fountain, <u>Idempotent-Connected Abundant</u>
 Semigroups, Proc. Roy. Soc. Edinburgh, Series A, 91(1981), 79-90.
- 6. A. El-Qallali and J. B. Fountain, Quasi-Adequate Semigroups, Proc. Roy. Soc. Edinburgh, Series A, 91(1981), 91-99.
- 7. A.El-Qallali, L*-Unipotent Semigroups, to appear in J.Pure Appl. Algebra.
- 8. J.B. Fountain, Adequate Semigroups, Proc. Edinburgh Math. Soc. 22(1979), 113-125.
- 9. J.B. Fountain, Abundant Semigroups, Proc. London Math. Soc. (3), 44(1982), 103-129.
- 10. J.M. Howie, An Introduction to Semigroup Theory (Academic Press, London, 1976).
- 11. D. B. McAlister, <u>One-to-one Partial Right Translations of a Right Cancellative Semigroup</u>, J. Algebra 43(1976), 231-251.
- 12. F. Pastijn, A Representation of a Semigroup by a Semigroup of

- Matrices Over a Group With Zero, Semigroup Forum, 10(1975), 238-249.
- 13. J. Rhodes, <u>Infinite Iteration of Matrix Semigroups II.</u>

 <u>Structure Theorem for Arbitrary Semigroups Up to Aperiodic Morphism</u>, J. Algebra 100(1986), 25-137.
- 14. M.B. Szendrei, On Takizawa's Construction for E-Unitary Runipotent Semigroups, Beitr, Algebra Geom. 20(1985), 197-201.
- 15. M.B. Szendrei, <u>E-Unitary R-unipotent Semigroups</u>, Semigroup Forum 32(1985), 87-96.
- 16. B. Tilson, On the Complexity of Finite Semigroups, J. Pure Appl. Algebra 5(1974), 187-208.
- 17. B.Tilson, Complexity of Semigroups and Morphisms, Chapter 12 of 4(1976).
- 18. B. Tilson, <u>Categories as Algebra: An Essential Ingredient in the Theory of Semigroups</u>, Preprint, 1986.
- 19. R.J. Warne, The Direct Product of Right Zero Semigroups and Certain groupoids, Amer. Math. Monthly 74(1967), 160-164.
- 20. R.J. Warne, L-unipotent Semigroups, Nigerian J. Science 5(1972), 245-248.
- 21. R.J. Warne, Generalized L-unipotent Semigroups, Bull. Della Unione Math. Ital. 5(1972), 43-47.
- 22. R.J. Warne, On the Structure of Semigroups Which are Unions of Groups, Trans. Amer. Math. Soc. 186(1973), 385-401; announced in Semigroup Forum 5(1973), 323-330).
- 23. R.J. Warne, <u>Generalized -L-Unipotent Bisimple Semigroups</u>, Pacific J. Math 51(1974), 631-648.

- 24. R.J. Warne, Embedding of Regular Semigroups in Wreath Products, J. Pure Appl. Algebra 29(1983), 177-207.
- 25. R.J. Warne, Embedding of Regular Semigroups in Wreath Products, III, J. Pure Appl. Algebra 40(1986), 301-320.
- 26. R.J. Warne, A Global Theory of Orthodox Unions of Groups, submitted.

Dept. of Mathematical Sciences King Fahd University of Petroleum and Minerals Dhahran 31261, Saudi Arabia