Comments on a Paper of El-Qallali

Warne, R.J.
Comments on a Paper of El-Qallali

R.J. Warne

Let S be a semigroup and let L and R be Green’s Relations on S. Define $(a,b) \in L^*$ if $(a,b) \in S \times S$ and $(a,b) \in L$ in some oversemigroup of S. R^* is defined dually. El-Qallali and Fountain [3] term a semigroup S quasi-adequate if each L^*-class of S and each R^*-class of S contains an idempotent and $E(S)$, the set of idempotents of S, is a subsemigroup. If, in addition, each L^*-class of S contains precisely one idempotent, El-Qallali [4] terms S an L^*-unipotent semigroup. The purpose of this note is to extend El-Qallali’s main result (Theorem 4.6) of [4] from L^*-unipotent semigroups to quasi-adequate semigroups (Theorem 4). More precisely, El-Qallali’s theorem states: Let E be a band and $E = \cup(E_\alpha : \alpha \in Y)$ be its maximal semilattice decomposition. Suppose that for each $\alpha \in Y$, E_α is a right zero semigroup and to each $\alpha \in Y$ assign a cancellative monoid M_α such that $M_\alpha \cap M_\beta = \emptyset$ if $\alpha \neq \beta$. Further, suppose that for $\alpha > \beta$ there exists a homomorphism

$$\pi_{\alpha,\beta} : M_\alpha \to M_\beta$$

such that if $\alpha > \beta > \nu$, then $\pi_{\alpha,\beta} \pi_{\beta,\nu} = \pi_{\alpha,\nu}$. Set $\pi_{\alpha,\alpha}$ equal to the identity automorphism on M_α. Let $S = \cup(E_\alpha \times M_\alpha : \alpha \in Y)$ and define a multiplication on S by $(e,x)(f,y) = (ef, x\pi_{\alpha,\beta} y \pi_{\beta,\alpha})$ for any $(e,x) \in E_\alpha \times M_\alpha$ and $(f,y) \in E_\beta \times M_\beta$. Then, S is an L^*-unipotent semigroup which is a band of cancellative monoids. Conversely, any L^*-unipotent semigroup which is a band of cancellative monoids can be constructed in this manner.
In Theorem 4, we show that we may omit "suppose that for each $\alpha \in Y$, E_{α} is a right zero semigroup" and that "L^*-unipotent semigroup" may be replaced by "quasi- adequate semigroup" in El-Qallali's theorem.

A semigroup S is a band of cancellative monoids if $S = \cup(S_\alpha : \alpha \in B)$ where S_α is a cancellative monoid, $S_\alpha \cap S_\beta = \Box$ if $\alpha \neq \beta$, B is a band (idempotent semigroup), and $S_\alpha S_\beta \subseteq S_{\alpha\beta}$. For definitions not given here see [1] or [6].

In the case of regular semigroups, Theorem 4 reduces to Yamada's characterization of orthodox semigroups which are bands of groups [9].

We will use the following fact without explicit mention: $(a, b) \in L^*$ if and only if for all $x, y \in S'$ (S with an appended identity) $ax = ay$ if and only if $bx = by$. The dual result is valid for R^* (see [7], for example). Let $H^* = L^* \cap R^*$.

We will term a semigroup S a quasi-orthogroup if $E(S)$ is a subsemigroup and each H^*-class of S contains an idempotent. To prove Theorem 4, we will first need the "gross" structure of quasi-orthogroups (Lemma 1). The following terminology will be used in the proof of Lemma 1. Let S be a semigroup and let I and J be sets and let $P : J \times I \to S$ with $(j, i)P = p_{ji}$. Let $M(S, I, J, P)$ denote $S \times I \times J$ under the multiplication $(a, i, j)(b, r, s) = (ap_{ji}, b, i, s)$. We term $M(S, I, J, P)$ a Rees matrix semigroup over S with entries in P. We also need the following notation to state Lemma 1. Let S be a semigroup. For $a \in S$, $L^*_a(S)$ will denote the L^*-class of S containing a.

Lemma 1 A semigroup S is a quasi-orthogroup if and only if S is a semi-
lattice $Y = S/J^*$ (see [5] for definition of J^*). If S is a regular semigroup, $J^* = J$) of semigroups $(S_y : y \in Y)$ where $S_y = T_y \times E(S_y)$ where T_y is a cancellative monoid and $E(S_y)$ is a rectangular band, $L_y^*(S) = L_y^*(S_y)$ and $R_y^*(S) = R_y^*(S_y)$ for $y \in Y$ and $a \in S_y$ and $E(S)$ is a semilattice Y of rectangular bands $(E(S_y) : y \in Y)$.

Proof. Utilizing [5, Theorem 6.8 and its proof and Corollary 5.2], we obtain the above theorem (except the statement about $E(S)$) with $S_y = M(T_y, I_y, J_y, P_y)$, a Rees matrix semigroup over a cancellative monoid T_y where the entries of P_y are units U of T_y. As is easily shown, [1, Lemma 3.6] is valid for the above matrix semigroups if we require the mappings to have range U. Using this lemma we may "normalize" P_y such that all the elements in a given row and a given column are the identity e of T_y. Then using the assumption that $E(S)$ is a subsemigroup, we may show $p_{ji} = e$, the identity of T_y, for all $j \in J_y$ and $i \in I_y$. Hence $M(T_y, I_y, J_y, P_y) = T_y \times E(S_y)$ where $E(S_y)$ is a rectangular band.

In the proof of Theorem 4, we will need a quasi-orthogroup analogue to the minimum inverse semigroup congruence of an orthogroup (an orthodox union of groups) (Proposition 3).

For $(g, i, j), (h, r, s) \in S$, a quasi-orthogroup define $(g, i, j) \delta (h, r, s)$ if $(g, i, j), (h, r, s) \in S_y$, say, and $g = h$.

We show (Proposition 3) that δ is the smallest good congruence on S $(aL^*b$ implies $a\delta L^*b\delta$ and aR^*b implies $a\delta R^*b$)

such that $E(S/\delta)$ is a semilattice and, furthermore, that S/δ is a strong
semilattice Y of the cancellative monoids $(T_y : y \in Y)$ (notation of Lemma 1).

To show δ is a congruence relation, we will need the following lemma.

Lemma 2 Let $S_y = T_y \times E_y$ and $S_z = T_z \times I_z \times J_z$ where T_y and T_z are cancellative monoids, E_y is a rectangular band, I_z is a left zero semigroup and J_z is a right zero semigroup. Assume there exists

a) A left representation $A \rightarrow \lambda_A$ of S_y by transformations of I_z.

b) A right representation $A \rightarrow \rho_A$ of S_y by transformation of J_z.

C) A homomorphism ϕ of T_y into T_z.

Define a binary operation on $S_y \cup S_z$ extending the given ones on S_y and S_z by defining products of $A = (a, e) \in S_y$ and $(b, i, j) \in S_z$ as follows

$$(a, e)(b, i, j) = (a \phi b, \lambda_A i, j)$$

$$(b, i, j)(a, e) = (b(a \phi), i, j \rho_A).$$

Then $S_y \cup S_z$ becomes a semigroup with S_z as an ideal.

Conversely, every possible binary associative operation on $S_y \cup S_z$ extending the given ones on S_y and S_z, and such that S_z is an ideal, can be constructed in the above manner.

Proof. Lemma 2 has been established by Clifford [2, Lemma 2.5] in the case T_y and T_z are groups. Clifford’s proof is easily seen to be valid when T_y and T_z are just cancellative monoids.
Proposition 3 Let S be a quasi-orthogroup. Then, δ is the smallest good congruence on S such that $E(S/\delta)$ is a semilattice. Furthermore, S/δ is isomorphic to a semigroup $T = \bigcup(T_y : y \in Y)$ which is a strong semilattice Y of the cancellative monoids $(T_y : y \in Y)$ under the isomorphism $(g, i, j)\delta_T = g$.

Proof. We first show that δ is a congruence relation on S. Let $\bar{\delta}$ denote the smallest congruence relation on S containing δ. Suppose $a\bar{\delta}b$. Then, there exists $a = a_1, a_2, \ldots, a_n = b \in S$ such that $a_i = x_iu_iy_i$, $a_{i+1} = x_iv_iy_i$ where $x_i, y_i \in S^1$ and $u_i, v_i \in \delta$ for $1 \leq i \leq n - 1$. Suppose $x_i = (w, p, q)_y \in S_y, y_i = (h, c, d)_z \in S_z, u_i = (g, m, n)_i \in S_i$ and $v_i = (g, r, s)_i \in S_i$. Let $\theta = yzt$. Hence, $a_i = (A, a, b)_\theta \in S_\theta$ and $a_{i+1} = (B, e, f)_\theta \in S_\theta$, say. So,

$$(A, a, b)_\theta = (w, p, q)_y(g, m, n)_i(h, c, d)_z,$$

$$(B, e, f)_\theta = (w, p, q)_y(g, r, s)_i(h, c, d)_x.$$

If we multiply both of the above equations on the left and the right by $(e, a, b)_\theta$ where e is the identity of T_θ, we obtain

\begin{align*}
(A, a, b)_\theta &= (\bar{\omega}, \bar{p}, \bar{q})_\theta(g, m, n)_i(h, \bar{c}, \bar{d})_\theta \\
(B, a, b)_\theta &= (\bar{\omega}, \bar{p}, \bar{q})_\theta(g, r, s)_i(h, \bar{c}, \bar{d})_\theta.
\end{align*}

(1)

Using Lemma 2, we obtain

\begin{align*}
(\bar{\omega}, \bar{p}, \bar{q})_\theta(g, m, n)_i &= (\bar{\omega}(g, \phi_\theta), \bar{p}, \bar{q}, \rho(g, m, n)_i)_\theta \\
(\bar{\omega}, \bar{p}, \bar{q})_\theta(g, r, s)_i &= (\bar{\omega}(g, \phi_\theta), \bar{p}, \bar{q}, \rho(g, r, s)_i)_\theta
\end{align*}

(2)

where ϕ_θ is a homomorphism of T_i into T_θ and $A \rightarrow \rho_\theta$ is a right representation of S_i by transformations of J_θ. Combining (1) and (2), we obtain

$A = B$. Thus, $a_i\delta a_{i+1}$ for $1 \leq i \leq n - 1$. Thus, $a\delta b$. Hence, $\delta = \bar{\delta}$, and thus
\(\delta \) is a congruence relation on \(S \). Since \((g,i,j)\delta r = g\) defines a one-to-one mapping of \(S/\delta \) onto \(T = \cup(T_y : y \in Y) \), it is easily checked that \(T \) becomes a semilattice \(Y \) of cancellative monoids \((T_y : y \in Y) \) under the multiplication \(ab = (ar^{-1}br^{-1})r \) and \(r \) defines an isomorphism of \(S/\delta \) onto \(T \). For \(a \in T_x \) and \(z \geq y \) define \(aC_{z,y} = ae_y \) where \(e_y \) is the identity of \(T_y \). It is routine to verify that \(C_{z,y} \) is a homomorphism of \(T_z \) into \(T_y \); \(C_{y,y} \) is the identity automorphism of \(T_y \); and for \(a \in T_y, b \in T_r \), \(ab = ac_{y,w}bC_{z,w} \). Since \(e_y e_z = e_y \) for all \(y, z \in Y \), \(C_{y,y}C_{z,w} = C_{y,w} \) for \(y \geq z \geq w \). So, \(T \) is a strong semilattice \(Y \) of the \(T_y \). Suppose \(aR^*b \). Then, \(a, b \in S_y \), say. Hence, \(a\delta, b\delta \in T_y \). Thus, using the fact \(T \) is a strong semilattice \(Y \) of the \(T_y \), \(a\delta R^*b\delta \). Similarly, \(aL^*b \) implies \(a\delta L^*b\delta \). So, \(\delta \) is a good congruence. (So, each \(H^* \)-class of \(S/\delta \) contains an idempotent). Clearly, \(E(S/\delta) \) is a semilattice. If \(\lambda \) is another such congruence, use the fact \(E(S_y)\lambda \) is a singleton to show \(\delta \leq \lambda \).

Remark The statement and proof of Proposition 3 is contained in the proof of [8, Theorem 6].

We are now in a position to establish Theorem 4.

Theorem 4 Let \(E \) be a band and \(E = \cup(E_\alpha : \alpha \in Y) \) be its maximal semilattice decomposition. To each \(\alpha \in Y \) assign a cancellative monoid \(M_\alpha \) such that \(M_\alpha \cap M_\beta = \emptyset \) if \(\alpha \neq \beta \). Furthermore, suppose that for \(\alpha > \beta \) there exists a homomorphism

\[\pi_{\alpha,\beta} : M_\alpha \rightarrow M_\beta \]

such that if \(\alpha > \beta > \nu \) then \(\pi_{\alpha,\nu} = \pi_{\alpha,\beta} \pi_{\beta,\nu} \). Set \(\pi_{\alpha,\alpha} \) equal to the identity automorphism on \(M_\alpha \). Let \(S = \cup((E_\alpha \times M_\alpha) : \alpha \in Y) \) and define a multiplication on \(S \) by \((e,x)(f,y) = (ef,x\pi_{\alpha,\alpha}y\pi_{\beta,\alpha})\) for any \((e,x) \in E_\alpha \times M_\alpha \) and \((f,y) \in E_\beta \times M_\beta \).
$E_{\alpha} \times M_{\alpha}, (f, y) \in E_{\beta} \times M_{\beta}$. Then, S is a quasi-adequate semigroup which is a band of cancellative monoids. Conversely, any quasi-adequate semigroup which is a band of cancellative monoids can be constructed in this manner.

Proof. Let S be a quasi-adequate semigroup which is a band of cancellative monoids. Then, using [4, Lemma 4.1], each H^*-class of S contains an idempotent and H^* is a congruence relation on S. Thus, S is a quasi-orthogroup on which H^* is a congruence relation. By Proposition 3, S/δ is isomorphic to $T = \cup(T_y : y \in Y)$, a strong semilattice Y of cancellative monoids $(T_y : y \in Y)$ (notation of Lemma 1). Thus, $T_y \cap T_z = \emptyset$ if $y \neq z$ and for $y > z$, there exists a homomorphism $\pi_{y, z} : T_y \rightarrow T_z$ such that for $y > z > w$, $\pi_{y, z} \pi_{z, w} = \pi_{y, w}$ and $\pi_{y, y}$ is the identity automorphism on T_y for $y \in Y$. Furthermore, $ab = a\pi_{y, z} b\pi_{z, y}$ for $a \in T_y$ and $b \in T_z$. Let $P = \cup(E(S_y) \times T_y) : y \in Y$) under the multiplication $(e, x)(f, q) = (ef, xq)$ where $(e, x) \in E(S_y) \times T_y$ and $(f, q) \in E(S_z) \times T_z$. We will show that $(g, i, j)_y \lambda = ((e_y, i, j)_y, g)$ where $(g, i, j)_y \in S_y$ and e_y is the identity of T_y defines an isomorphism of S onto P. Clearly, λ defines a one-to-one mapping of S onto P. We will next show that λ defines a homomorphism of S onto P. Let $(g, i, j)_y \in S_y$ and $(h, r, s)_z \in S_z$. Thus, $(g, i, j)_y H^*(e_u, r, s)_u$, say. Hence, it is easily checked that $u = y$. Using the fact that H^* is a congruence relation, $(g, i, j)_y H^*(e_u, i, j)_y$. Similarly, $(h, r, s)_z H^*(e_z, r, s)_z$. Suppose $(g, i, j)_y (h, r, s)_z = (t, k, p)_z$. Hence, $(t, k, p)_z H^*(e_y, i, j)_y (e_z, r, s)_z$. Thus, $(e_y, i, j)_y (e_z, r, s)_z = (e_y, k, p)_z$. Hence, $((g, i, j)_y (h, r, s)_z) \lambda = (t, k, p)_z \lambda = ((e_y, k, p)_z, t)$ while $(g, i, j)_y (h, r, s)_z \lambda = ((e_y, i, j)_y, g)((e_z, r, s)_z, h) = ((e_z, k, p)_z, gh)$. Using Proposition 3 and its notation, $(g, i, j)_y \delta(h, r, s)_z \delta = (t, k, p)_z \delta$. So, $(g, i, j)_y \delta \tau \cdot (h, r, s)_z \delta \tau = (t, k, p)_z \delta \tau$. Thus, $gh = t$. Hence, λ
defines an isomorphism of S onto P. Thus, we have established the converse of Theorem 4.

Next, we establish the direct part of Theorem 4. It is easily checked that S is a semigroup. Let $e \in E_\alpha$. Then, $\{e\} \times M_\alpha$ is a cancellative monoid with identity (e, e_α) where e_α is the identity of M_α. Let $M_e = \{e\} \times M_\alpha$. Thus, $S = \bigcup(M_e : e \in E)$ and S is the band E of cancellative monoids $(M_e : e \in E)$. Clearly, $E(S) = \{(e, e_\alpha) : e \in E_\alpha, \alpha \in Y\}$. Since $e_\alpha e_\beta = e_\alpha \pi_{\alpha, \alpha \beta} e_\beta \pi_{\beta, \alpha \beta} = e_{\alpha \beta} e_{\alpha \beta} = e_{\alpha \beta}$, it follows that $E(S)$ is a subsemigroup of S. To complete the proof, we will show that $(e, g) H^*(e, e_y)$ where $e \in E_y$ and $g \in M_y$. We will show that $(e, g) L^*(e, e_y)$. Dually, $(e, g) R^*(e, e_y)$. Suppose $(e, g)(a, b) = (e, g)(c, d)$ where $a \in E_z$, $b \in M_z$, $c \in E_t$ and $d \in M_t$. Thus, $e_a = e_c$ and $g_b = g_d$. So, $g \pi_{y,t} b \pi_{z,t} = g \pi_{y,t} d \pi_{t,y}$ with $yz = yt$. Hence, $b \pi_{y,z} = d \pi_{t,y}$. Thus, $e_y \pi_{y,z} b \pi_{z,y} = e_y \pi_{y,t} d \pi_{t,y}$. Hence, $e_y b = e_y d$. So, $(e, e_y)(a, b) = (e, e_y)(c, d)$.

Acknowledgement: The author gratefully acknowledges the support of King Fahd University of Petroleum and Minerals.

Bibliography

Department of Mathematical Sciences
King Fahd University of Petroleum and Minerals
Dhahran 31261, Saudi Arabia