Rings Characterized by their Fuzzy Submodules

Ahsan Khan, Shabir, Zaman
RINGS CHARACTERIZED BY THEIR FUZZY SUBMODULES

J.Ahsan*, M.Farid Khan**, M.Shabir** and N.Zaman**

Abstract The notions of pure ideals and pure submodules play an important role in the study of rings and their module categories. In this paper, we introduce pure fuzzy ideals and pure fuzzy submodules of an R-module. We establish their basic properties and use them to obtain fuzzy theoretic characterizations of right weakly regular rings. Among other results, we prove that a ring R is right weakly regular if and only if each fuzzy submodule of a cyclic R-module is fuzzy pure.

1. Introduction

The fundamental concept of a fuzzy set, introduced by Zadeh in his classic paper [12] of 1965 provides a natural framework for generalizing some of the basic notions of algebra. In [11], Rosenfeld formulated the elements of a theory of fuzzy groups. N.Kuroki laid the foundations of a theory of fuzzy semigroups in his papers([5] and [6]). Fuzzy subgroups and fuzzy ideals of a ring have been investigated in [7] and [8], among others. Fu-Zheng Pan [9] initiated the study of fuzzy finitely generated modules. Recently, Golan [4] has considered the problem of assigning to each R-module the structure of a fuzzy submodule such that all R-homomorphisms become fuzzy R-homomorphisms in the sense of Fu-Zheng Pan [9].

In this paper, we introduce t-pure fuzzy ideals of a ring by extending the notion of (ordinary) pure ideals of a ring (cf. [1]). Moreover, as a generalization of t-pure
fuzzy ideals, we define pure fuzzy submodules of an
R-module and fuzzy normal modules. In section 2, we give
preliminary definitions and state our notational
conventions. In this section, we also establish basic
properties of t-pure fuzzy ideals and discuss other
related notions. In section 3, we prove two
characterization theorems for weakly regular rings. Among
other results, it is proved that a ring R is weakly
regular if and only if each fuzzy ideal of R is t-pure (if
and only if each cyclic R-module is fuzzy normal).

2. Preliminaries

Throughout this paper, R will denote a ring with an
identity 1, and R-modules are right unitary. L will denote
a complete lattice, that is, a set L with a partial order
on it such that for any subset A of L, infimum and
supremum of A, denoted by $\bigwedge_{a \in A}$ and $\bigvee_{a \in A}$, respectively, always exist. We also assume that L is distributive with a least
element 0 and a greatest element 1, in which the infinite
meet distributive law:

$$x \wedge (\bigvee_{a \in A}) = \bigwedge_{a \in A} (x \wedge a)$$

holds for any $A \subseteq L$ and $x \in L$. All fuzzy subsets of the set
S of discourse are L-fuzzy subsets of S in the sense of
Goguen [3], that is, a function from S into L. However,
for convenience, we shall write fuzzy subset instead of
L-fuzzy subset. If L is the unit interval $[0,1]$ of real
numbers, L-fuzzy subsets are fuzzy subsets in the usual sense (cf. [12]). A fuzzy subset \(\lambda : R \rightarrow L \) is nonempty if it is not the constant map which assumes the value 0 of L. For any fuzzy subsets \(\lambda \) and \(\mu \) of \(R \), \(\lambda \leq \mu \) means that, for all \(x \) in \(R \), \(\lambda(x) \leq \mu(x) \), in the ordering of \(L \). The symbols \(\wedge \mu \), \(\land \mu \), \(\land \mu \) will mean the following fuzzy subsets of \(R \):

\[
(\lambda \land \mu)(x) = \lambda(x) \land \mu(x) \\
(\lambda \land \mu)(x) = \lambda(x) \land \mu(x) \\
(\lambda \land \mu)(x) = \vee \{ \lambda(y_i) \land \mu(z_i) \} \\
\sum_{1 \leq i \leq p} x_i = 1
\]

A nonempty fuzzy subset \(A \) of \(R \) is called a fuzzy right (left) ideal of \(R \) if for any \(x, y \in R \),

\[
\lambda(x-y) \geq \lambda(x) \land \lambda(y) \quad \text{and} \quad \lambda(xy) \geq \land \lambda(x) \lambda(\lambda(y))
\]

A fuzzy subset of \(R \) which is both a fuzzy right ideal and a fuzzy left ideal of \(R \) is called a fuzzy ideal of \(R \). It is easily seen that \(\lambda \) is a fuzzy ideal of \(R \) if and only if

\[
\lambda(xy) \geq \land \lambda(x) \lambda(y) \quad \text{for any } x, y \in R.
\]

Analogous to the definition of the product \(I J \), for any ideals \(I \) and \(J \) of \(R \), we define the product \(\lambda \mu \), for any fuzzy ideals \(\lambda \) and \(\mu \) of \(R \), as the fuzzy subset defined by

\[
(\lambda \mu)(x) = \vee \left(\bigwedge_{1 \leq i \leq p} (\lambda(y_i) \land \mu(z_i)) \right) \\
\sum_{i=1}^{p} x_i = 1 \quad (p \text{ is an integer} \geq 1)
\]

for any \(x \in R \). It is easily seen that \(\lambda \mu \) is a fuzzy ideal of \(R \), whenever \(\lambda \mu \) is nonempty.

Definition 2.1 [4] Let \(M_R \) be a right \(R \)-module. A function \(\lambda : M \rightarrow L \) is called a fuzzy submodule of \(M_R \) if the
following conditions hold:

(1) \(\lambda(0) = 1 \);

(2) \(\lambda(m + m') \geq \inf (\lambda(m), \lambda(m')) \) for all \(m, m' \in M \).

(3) \(\lambda(ma) \geq \lambda(m) \) for all \(m \in M \) and all \(a \in R \).

From the above definition it follows that, if \(\lambda \) is a fuzzy submodule of \(R \), then \(\lambda(0) = 1 \). In the sequel, fuzzy submodules of \(R \) are called fuzzy right ideals of \(R \). Fuzzy left ideals of \(R \) are defined analogously. By a fuzzy ideal of \(R \) we shall mean a fuzzy ideal which is both a fuzzy right and a fuzzy left ideal of \(R \).

Definition 2.2 Let \(\lambda \) be a fuzzy submodule of \(M \) and \(\mu \) a fuzzy ideal of \(R \). Then we define the fuzzy subset \(\lambda \mu \) of \(M \) by

\[
(\lambda \mu)(x) = \vee \left\{ \bigwedge_{i \leq p} (\lambda(y_{i}) \wedge \mu(z_{i})) \right\}
\]

where \(y_{i} \in M \) and \(z_{i} \in R \) for each \(x \in M \).

Proposition 2.1 \(\lambda \mu \) is a fuzzy submodule of \(M \).

Proof We have

\[
(\lambda \mu)(x) = \vee \left(\bigwedge_{i \leq p} (\lambda(y_{i}) \wedge \mu(z_{i})) \right) \quad \text{for any } x \in M.
\]

where \(y_{i} \in M \) and \(z_{i} \in R \), for any \(x \in M \).

Thus \((\lambda \mu)(0_{M}) = \vee \left(\bigwedge_{i \leq p} (\lambda(y_{i}) \wedge \mu(z_{i})) \right) \)

\[
= \bigwedge_{i = 1}^{p} y_{i} z_{i}
\]

\[\geq \bigwedge \lambda(0) = (1, 1) = 1\]
Thus $\langle \lambda \mu \rangle(0_M) = 1$.

Again, $\langle \lambda \mu \rangle(m) = \lor \left(\land \langle \lambda(y'_j) \land \mu(z'_j) \rangle \right)_{1 \leq j \leq q}$
\[m = \sum_{j=1}^{q} y'_j z'_j\]
and $\langle \lambda \mu \rangle(m') = \lor \left(\land \langle \lambda(y''_k) \land \mu(z''_k) \rangle \right)_{1 \leq k \leq r}$
\[m' = \sum_{k=1}^{r} y''_k z''_k\]
where $m, m' \in M$.

Thus $\langle \langle \lambda \mu \rangle(m) \land \langle \lambda \mu \rangle(m') \rangle \rangle$
\[= \inf \left[\lor \left(\land \langle \lambda(y'_j) \land \mu(z'_j) \rangle \right) \right]_{1 \leq j \leq q}
\[\land \left(\land \langle \lambda(y''_k) \land \mu(z''_k) \rangle \right) \right]_{1 \leq k \leq r}
\[m = \sum_{j=1}^{q} y'_j z'_j \land m' = \sum_{k=1}^{r} y''_k z''_k\]
\[\leq \lor \left[\land \langle \lambda(y''_l) \land \mu(z''_l) \rangle \right] \langle \lambda \mu \rangle(m+m') \right)_{1 \leq l \leq s}
\[m+m' = \sum_{l=1}^{s} y''_l z''_l\]
Thus $\langle \lambda \mu \rangle(m+m') \geq \langle \langle \lambda \mu \rangle(m) \land \langle \lambda \mu \rangle(m') \rangle \rangle$ for $m, m' \in M$.

Also, $\langle \lambda \mu \rangle(m) = \lor \left(\land \langle \lambda(y'_j) \land \mu(z'_j) \rangle \right)_{1 \leq j \leq q}$
\[m = \sum_{j=1}^{q} y'_j z'_j\]
\[\leq \lor \left(\land \langle \lambda(y'_j) \land \mu(z'_j) \rangle \right)_{1 \leq j \leq q}
\[m = \sum_{j=1}^{q} y'_j z'_j\]
\[\leq \lor \left(\land \langle \lambda(y''_n) \land \mu(z''_n) \rangle \right)_{1 \leq n \leq r}
\[m = \sum_{n=1}^{r} y''_n z''_n\]
\[= \langle \lambda \mu \rangle(m a)\).

Thus $\langle \lambda \mu \rangle(m a) \geq \langle \lambda \mu \rangle(m)$ for $m \in M$ and $a \in R$.

Hence $\lambda \mu$ is a fuzzy submodule of M.

We now recall some definitions and results from ring
theory.

Definition 2.3 ([1]) A two-sided ideal I of R is called right t-pure if, for each $x \in I$, there exists an element $y \in I$ such that $x = xy$ (t stands for the two sidedness of I).

Proposition 2.2 ([1]) A two-sided ideal I of R is right t-pure if and only if $J \cap I =JI$ for any right ideal J of R.

Extending the above notion to arbitrary modules we obtain the following definition.

Definition 2.4 A submodule M of an R-module M is pure in M if and only if $M \cap MI = NI$ for each ideal I of R. M is called normal if each submodule of M is pure.

The following definitions extend the above notions to the case of fuzzy subsets.

Definition 2.5 A fuzzy ideal λ of R is called a t-pure fuzzy ideal of R if $\lambda \cap \mu = \lambda \mu$, for each fuzzy right ideal μ of R.

Definition 2.6 Let λ be a fuzzy submodule of an R-module M. Then λ will be called a pure fuzzy submodule of M if for each fuzzy ideal μ of R, $\lambda \cap (M \mu) = \lambda \mu$, where M denotes the fuzzy submodule of $M_{\mathbb{R}}$ defined by $M(x) = 1$ for each $x \in M$. $M_{\mathbb{R}}$ will be called fuzzy normal if each fuzzy submodule of $M_{\mathbb{R}}$ is a pure fuzzy submodule of M. In particular, R will be called fuzzy normal if $R_{\mathbb{R}}$ is fuzzy normal.

The following proposition shows that the notion of a t-pure fuzzy ideal is an extension of an ordinary
t-pure ideal of a ring, as defined in [1].

Proposition 2.3 Let A be an ideal of R. Then the following statements are equivalent:

(1) A is right t-pure in R;

(2) The characteristic function of A, denoted by \(\delta_A \), is a t-pure fuzzy ideal of R.

Proof Suppose A is (right) t-pure in R.

Now, since A is a two-sided ideal of R, \(\delta_A \) is obviously a fuzzy ideal of R. To prove that \(\delta_A \) is fuzzy t-pure we must show that, for any fuzzy right ideal \(\xi \) of R, \(\xi \cap \delta_A = \xi \circ \delta_A \). Let \(x \in A \). Now,

\[
(\xi \circ \delta_A)(x) = \vee \{ \sum y_i z_i \mid (\xi(y_i) \wedge \delta_A(z_i)) \}
\]

\[
\leq \vee \{ \sum y_i z_i \mid (\xi(y_i z_i) \wedge \delta_A(y_i z_i)) \}
\]

\[
= \vee \{ (\xi(y_i z_i) \wedge \delta_A(y_i z_i)) \}
\]

\[
\leq \vee [\xi(x) \wedge \delta_A(x)]
\]

\[
= \xi(x) \wedge \delta_A(x) = (\xi \cap \delta_A)(x)
\]

Now consider the case \(x \notin A \). We have

\[
(\xi \cap \delta_A)(x) = \xi(x) \wedge \delta_A(x) = 0
\]

\[
\leq (\xi \circ \delta_A)(x).
\]

For the case \(x \in A \) we have \((\xi \cap \delta_A)(x) = \xi(x) \wedge \delta_A(x) = \xi(x) \wedge \delta_A(t) \). Here \(t \in A \) such that \(x = xt \).

(This follows, since A is (right) t-pure, so for any \(x \in A \) there exists \(t \in A \) such that \(x = xt \), and since \(t \in A \), so \(\delta_A(x) = 1 = \delta_A(t) \).)
Thus \((\xi \cap \delta __)(x) \leq \xi(x) \land \delta __ (t)\)

\[
\ni \cup \left[\land \left(\xi \left(y_i \right) \land \delta __ \left(z_i \right) \right) \right] = \left(\xi \circ \delta __ \right)(x).
\]

Thus, for any fuzzy right ideal \(\xi\) of \(R\), \(\xi \cap \delta __ \leq \xi \circ \delta __\). Thus, \(\delta __\) is a t-pure fuzzy ideal of \(R\).

Now, suppose that \(\delta __\) is a t-pure fuzzy ideal of \(R\). We show that \(A\) is (right) t-pure in \(R\). We show that for each right ideal \(B\) of \(R\), \(A \cap B = BA\). Since \(B\) is a right ideal of \(R\), the characteristic function, \(\delta __\) of \(B\) is a fuzzy right ideal of \(R\). Since \(\delta __\) is (right) t-pure fuzzy, we have \(\delta __ \cap \delta __ \leq \delta __ \circ \delta __\). This implies that \(\delta __ \cap \delta __ \leq \delta __ \circ \delta __\). From here it follows that \(A \cap B = BA\). Hence \(A\) is a (right) t-pure ideal of \(R\).

Proposition 2.4 The following assertions are true:

(1) If \(\lambda __ \) and \(\lambda __ \) are t-pure fuzzy ideals of \(R\) then so is \(\lambda __ \land \lambda __ \);

(2) If \(\{\lambda __ : i \in I\}\) is a family of t-pure fuzzy ideals of \(R\), then so is \(\bigvee_{i \in I} \lambda __ \).

Proof (1) \(\lambda __ \) and \(\lambda __ \) are (right) t-pure fuzzy ideals of \(R\). We have to show that \(\lambda __ \land \lambda __ \) is a (right) t-pure fuzzy ideal of \(R\). That is, for each fuzzy right ideal \(\mu \) of \(R\)

\[
\mu \circ (\lambda __ \land \lambda __) = \mu \circ (\lambda __ \land \lambda __ _);
\]

Now, since \(\lambda __ \) is (right) t-pure fuzzy in \(R\) therefore \(\lambda __ \circ \lambda __ \). Hence

\[
\mu \circ (\lambda __ \land \lambda __) = \mu \circ (\lambda __ \circ \lambda __ _)
\]

(1)
Also,
\[\mu(\lambda_1 \land \lambda_2) = (\mu \lambda_1 \land \lambda_2) = (\mu \lambda_1) \land \lambda_2 \]
(2)

Now we show that \(\mu \lambda_i \) is a fuzzy right ideal of \(R \), i.e. \((\mu \lambda_i) (x x') \geq (\mu \lambda_i) (x) \)

and \((\mu \lambda_i)(x-x') \geq [(\mu \lambda_i)(x) \land (\mu \lambda_i)(x')] \) for any \(x, x' \in R \).

Now \((\mu \lambda_i)(x) = \mathcal{V} \left[(\mu(y_i) \land \lambda_i(z_i)) \right] \)
\[x = \sum y_i z_i \]
\[\leq \mathcal{V} \left[(\mu(y_i) \land \lambda_i(z_i x')) \right] \]
\[x = \sum y_i z_i \]
\[\leq \mathcal{V} \left[(\mu(y_i') \land \lambda_i(z_i')) \right] = (\mu \lambda_i)(x x') \]
\[x x' = \sum y_i' z_i' \]

Also, \([(\mu \lambda_i)(x) \land (\mu \lambda_i)(x')] \)
\[= \mathcal{V} \left[(\mu(y_i) \land \lambda_i(z_i')) \right] = (\mu \lambda_i)(x-x') \]
\[\sum y_i z_i \]
\[\leq \mathcal{V} \left[(\mu(y_i'') \land \lambda_i(z_i'')) \right] = (\mu \lambda_i)(x-x') \]
\[\sum y_i'' z_i'' \]

Thus (2) gives us
\[\mu(\lambda_1 \land \lambda_2) = (\mu \lambda_1 \land \lambda_2) = \mu \lambda_1 \land \lambda_2 \]
by the associativity of the operation \(\cdot \).

Hence (1) and (2) give \(\mu \lambda(\lambda_1 \land \lambda_2) = \mu \lambda(\lambda_1 \land \lambda_2) \).

(2) Now suppose \(\{ \lambda_i : i \in I \} \) is a family of (right) t-pure fuzzy ideals of \(R \). Let \(\mu \) be any fuzzy right ideal of \(R \). We need to show that \(\mu \lambda_i(i \in I) = \mu \lambda_i(i \in I) \).

Thus, for each \(x \in R \) we have
\[[\mu \lambda_i(i \in I)](x) = \mathcal{V} \left[\sum (\mu(y_j) \land (\mu \lambda_i)(z_j)) \right] \]
\[x = \sum y_j z_j \]
\begin{align*}
\leq & \lor \left(\bigwedge \mu(y_j, z_j) \land \left(\lor \bigwedge \lambda_i(y_j z_j) \right) \right) \\
& x = \sum y_j z_j \\
= & \lor \left(\bigwedge \left(\bigwedge \mu(y_j, z_j), \bigwedge \lambda_i(y_j z_j) \right) \right) \\
& x = \sum y_j z_j \\
\leq & \lor \left(\bigwedge \left[\mu(x), \left(\lor \bigwedge \lambda_i \right)(x) \right] \right) \\
& x = \sum y_j z_j \\
= & \left(\mu(x), \left(\lor \bigwedge \lambda_i \right)(x) \right) \\
& i \in \mathbb{I} \\
= & \left(\mu(\lor \bigwedge \lambda_i)(x) \right) \\
& i \in \mathbb{I}
\end{align*}

Therefore \((\mu \land \lor \lambda_i) \leq \mu(\lor \lambda_i)\)

Again, \([\mu(\lor \lambda_i)](x) = [\mu(x) \land (\lor \lambda_i)(x)]\)

\[i \in \mathbb{I}\]

\[x = \sum y_j z_j \]

\[= [\mu(x) \land \lor (\lambda_i(x))] \quad \text{(by the infinite meet distributive law.)} \]

\[i \in \mathbb{I} \]

\[= \lor (\mu \land \lambda_i)(x) \]

\[i \in \mathbb{I} \]

because \(\lambda_i\) are (right) pure fuzzy ideals of \(R\).

Now, \((\mu \land \lambda_i)(x) = \lor \left(\bigwedge \mu(y_j), \lambda_i(z_j) \right)\).

\[x = \sum y_j z_j \]

We have, \(\lambda_i(z_j) \leq (\lor \lambda_i)(z_j)\)

therefore, \((\mu \land \lambda_i)(x) \leq \lor \left(\bigwedge \left(\mu(y_j), (\lor \lambda_i)(z_j) \right) \right) \]

\[x = \sum y_j z_j \]

\[= [\mu \land (\lor \lambda_i)](x) \]

therefore, \(\lor (\mu \land \lambda_i)(x) \leq [\mu \land (\lor \lambda_i)](x) \]

\[i \in \mathbb{I} \]

Thus, \([\mu(\lor \lambda_i)](x) \leq [\mu(\lor \lambda_i)](x) \]

\[i \in \mathbb{I} \]

Thus \(\mu(\lor \lambda_i) \leq \mu(\lor \lambda_i)\).

\[i \in \mathbb{I} \]

Hence \(\lor \lambda_i\) is also a t-pure fuzzy ideal of \(R\).
3. Characterizations of rings by the properties of their fuzzy submodules

First we recall a well known definition from ring theory. A ring R is called regular (in the sense of Von Neumann) if for each $x \in R$, there exists an element $y \in R$ such that $x = xyy$. In [2], Brown and McCoy considered the related notion of weakly regular rings. These rings were later studied by Ramamurthy [10] and others. R is called right weakly regular if, for each $x \in R$, $x \in (x^R)^2$. Thus, if R is commutative and weakly regular, then R is regular (in the sense of Von Neumann).

We now state a characterization theorem for right weakly regular rings, part of whose proof is due to Ramamurthy [12]. We include a complete proof for the sake of convenience.

Proposition 3.1 For a ring R the following assertions are equivalent:

1. R is right weakly regular;
2. $B^2 = B$ for any right ideal B of R;
3. Each (two sided) ideal of R is t-pure.

Proof
(1) \Rightarrow (2) Let B be a right ideal of R. Clearly, $B^2 \subseteq B$. Let $x \in B$. Then $x \in (x^R)(x^R) \subseteq BB = B^2$. Hence $B = B^2$.

(2) \Rightarrow (3) Let A be a two sided ideal of R. In order to prove that A is right t-pure, we must show (using Proposition 2.2) that $B \cap A = BA$ for each right ideal B of R. Clearly, $BA \subseteq B \cap A$. To prove the reverse inclusion, let
since $x\in x^R = x(RxR) = x(RxR) = x^2Ax = BA$, we have $B \cap A = BA$ and so $B \cap A = BA$.

(3) \Rightarrow (1) Let $x \in R$ and $A = RxR$ be the two-sided ideal generated by x. Let B be the right ideal xR generated by x. Then $x \in B \cap A = BA$, since A is right t-pure. But $BA = (xR)(RxR) \subseteq xR^2 xR \subseteq (xR)(xR)$. Hence $x = (xR)(xR)$, showing that R is right weakly regular.

Next we prove a Lemma.

Lemma 3.1 Let R be a right weakly regular ring and I an ideal of R. Then for any finite number of elements $a_1, a_2, \ldots, a_n \in I$, there exists an element $b \in I$ such that $a_k = a_k b$ for $k = 1, \ldots, n$.

Proof [1] We prove the Lemma by induction on n. The result is valid for $n = 1$, since then I is right pure by Proposition 3.1 (3). Now suppose that the result is valid for n and let a_1, \ldots, a_{n+1} be $n+1$ elements in I. Since I is right pure, we can choose an element $t \in I$ such that $a_{n+1} = a_{n+1} t$. By induction hypothesis, there exists $t' \in I$ such that for $k = 1, \ldots, n$,

$$(a_k - a_k t') t' = (a_k - a_k t)$$

Hence

$$a_{n+1} (t + t' - tt') = a_{n+1} t + a_{n+1} t' - a_{n+1} tt'$$

$$= a_{n+1} + a_{n+1} t' - a_{n+1} t' = a_{n+1}$$

and for $k = 1, \ldots, n$; we have

$$a_k (t + t' - tt') = a_k t + a_k t' - a_k tt' = a_k t + (a_k - a_k t') t'$$

$$= a_k t + a_k - a_k t = a_k$$

This completes the inductive argument.
We now establish a module theoretic characterization of weakly regular rings.

Proposition 3.2 The following assertions for \(R \) are equivalent:

1. \(R \) is right weakly regular;
2. \(R_R \) is normal;
3. Each \(R \)-module is normal.

Proof

1. \(\Rightarrow \) 2. In order to prove that \(R_R \) is normal, we show, by Definition 2.4, that each right ideal \(J \) of \(R \) is pure, that is, \(J \cap RI = JI \) for each two sided ideal \(I \) of \(R \). But \(J \cap RI = J \cap I = JI \) by condition (3) of Proposition 3.1.

2. \(\Rightarrow \) 1. Let \(x \in R \). If \(B = xR \) is the right ideal of \(R \) generated by \(x \) and \(A = RxR \) the two sided ideal of \(R \) generated by \(x \), then, by the hypothesis, \(B \cap RA = B \cap A = BA \).

 Since \(x \in B \cap A \), it follows that \(x \in BA = (xR)(RxR) = xR^2 xR = (xR)(xR) \). Thus \(R \) is right weakly regular.

1. \(\Rightarrow \) 3. Let \(M \) be a right \(R \)-module. To show that \(M \) is normal we must show that every submodule \(N \) of \(M \) is pure in the sense of Definition 2.4, that is, \(N \cap MI = NI \) for each two side ideal \(I \) of \(R \). Clearly, \(NI \subseteq N \cap MI \). So, we prove that \(N \cap MI \subseteq NI \). Let \(x \in N \cap MI \). Since \(x \in MI \), we can write \(x = \sum_{i=1}^{n} m_i a_i \), where \(m_i \in M \) and \(a_i \in I \). By Lemma 3.1, there exists \(b \in I \) such that \(a_i = a_i b \) \((i = 1, \ldots, n)\).

 Hence \(x = \sum_{i=1}^{n} m_i a_i b = (\sum_{i=1}^{n} m_i a_i) b = xb \in NI \).

3. \(\Rightarrow \) 1. Since each right \(R \)-module is normal, so in
particular, \(R_\mathbb{R} \) is normal. Hence, by \((2) \Rightarrow (1)\) proved above, it follows that \(R \) is weakly regular.

We now prove the following theorem.

Theorem 3.1 The following assertions for \(R \) are equivalent:

1. \(R \) is right weakly regular;
2. \(B^2 = B \) for each right ideal \(B \) of \(R \);
3. Each (two sided) ideal of \(R \) is right \(t \)-pure;
4. \(R_\mathbb{R} \) is normal;
5. Each right \(R \)-module is normal;
6. Each fuzzy right ideal of \(R \) is idempotent (A fuzzy right ideal \(\lambda \) of \(R \) is called idempotent if \(\lambda \lambda = \lambda \));
7. Each fuzzy ideal of \(R \) is a \(t \)-pure fuzzy ideal;

If \(R \) is commutative, then the above assertions are equivalent to:

8. \(R \) is (Von Neumann) regular.

Proof \((1) \iff (2) \iff (3) \iff (4)\): This follows from Propositions 3.1 and 3.2. Also, \((1) \iff (8)\) is clear.

\((1) \Rightarrow (6)\): Let \(\delta \) be a fuzzy right ideal of \(R \). Then, for any \(x \in R \),

\[
(\delta \circ \delta)(x) = \bigvee_{x=\sum y_i z_i} \left[\left(\bigvee (y_i \delta(z_i)) \right) \wedge \delta(z_i) \right].
\]

\[
\leq \bigvee_{x=\sum y_i z_i} \left[\left(\bigvee (y_i \delta(z_i)) \right) \wedge \delta(z_i) \right]
\]

\[
= \bigvee_{x=\sum y_i z_i} \left[\left(\bigvee (y_i \delta(z_i)) \right) \wedge \delta(z_i) \right]
\]

14
\[\leq \vee \left[\land \left[\delta(x) \land \delta(y_i z_i) \right] \right] \]
\[\times = \sum \delta \gamma_i z_i \]
\[\leq \vee \left[\delta(x) \right] = \delta(x) \]
\[\times = \sum \delta \gamma_i z_i \]

Thus \((\delta \circ \delta)(x) \leq \delta(x) \). Hence \(\delta \circ \delta \leq \delta \).

Again, \(\delta(x) \leq \delta(x) \land \delta(xa) \land \delta(xb) \),

where \(a, b \in R \) are such that \(x = xaxb \)

\[\leq \vee \left[\land \left[\delta(y_i z_i) \land \delta(y_i z_i) \right] \right] = (\delta \circ \delta)(x). \]
\[\times = \sum \delta \gamma_i z_i \]

Hence \(\delta(x) \leq (\delta \circ \delta)(x) \). Therefore \(\delta \leq \delta \circ \delta \). It follows that \(\delta \circ \delta \leq \delta \).

(6) \(\Rightarrow \) (1): Let \(x \in R \). We show that \(x \in (xR)^2 \). Let \(A = xR \) be the right ideal generated by \(x \). Let \(\delta_A \) be the characteristic function of \(A \). \(\delta_A \) is a fuzzy right ideal of \(R \). Hence \(\delta_A \circ \delta \leq \delta_A \). This implies that \(A = A^2 \). Since \(x \in A \) it follows that \(x \in A^2 = (xR)^2 \). Hence \(R \) is (right) weakly regular.

(1) \(\Rightarrow \) (7). Let \(\delta \) be a fuzzy ideal of \(R \) and \(\mu \) a fuzzy right ideal of \(R \). We show that \(\mu \circ \delta = \mu \circ \delta \). Now, for any \(x \in R \)

\[(\mu \circ \delta)(x) = \vee \left[\land \left[\mu(y_i z_i) \land \delta(y_i z_i) \right] \right] \leq \vee \left[\land \left[\mu(y_i z_i) \land \delta(y_i z_i) \right] \right] \]
\[\times = \sum \delta \gamma_i z_i \]
\[= \vee \left[\land \left[\mu(y_i z_i) \land \delta(y_i z_i) \right] \right] \]
\[\times = \sum \delta \gamma_i z_i \]
\[\leq \vee \left[\land \left[\mu(x) \land \delta(x) \right] = \mu(x) \land \delta(x) = (\mu \circ \delta)(x). \right. \]
\[\times = \sum \delta \gamma_i z_i \]

Again, \((\mu \circ \delta)(x) = \mu(x) \land \delta(x) \leq \mu(xa) \land \delta(xb) \)

where \(a, b \in R \) s.t. \(x = xaxb \).
\[\leq \bigwedge [\mu(y_i) \wedge \delta(z_i)] = (\mu \circ \delta)(x). \]

Thus \(\mu \circ \delta = \mu \wedge \delta \). Hence \(\delta \) is fuzzy pure.

(7) \Rightarrow (1): We show that \(R \) is (right) weakly regular. Let \(x \in R \) and let \(A = RxR \) be the two sided ideal generated by \(x \).

Let \(\delta_A \) be the characteristic function of \(A \). Then \(\delta_A \) is a fuzzy ideal of \(R \). Hence, by the hypothesis, \(\delta_A \) is fuzzy pure. Hence, \(A \) is pure in \(R \), by Proposition 2.3. Since \(x \in A \) and \(A \) is pure in \(R \), therefore, there exists \(y \in A \) such that \(x = xy \). This means that \(x \in xA = x(RxR) = (xR)^2 \). Hence, \(R \) is (right) weakly regular. This completes the proof of the theorem.

Next we prove the following Lemmas.

Lemma 3.2 If \(M \) is a module over a weakly regular ring \(R \) then for any fuzzy submodule \(\lambda \) of \(M \) and any fuzzy ideal \(\mu \) of \(R \),

\[(\lambda \circ \mu)(x) = \bigwedge [\lambda(y_i z_i) \wedge \mu(z_i)] \quad \text{for all } x \in M. \]

Proof Note that for any \(x \in M \),

\[(\lambda \circ \mu)(x) = \bigwedge [\lambda(y_i z_i) \wedge \mu(z_i)]. \]

Since \(R \) is weakly regular therefore, for each \(z_i \), there exists \(a_i \) and \(b_i \in R \) such that \(z_i = z_ia_ibi \). Note that

\[\lambda(y_iz_i) \leq \lambda(y_iz_ia_i) \leq \lambda(y_iz_ia_ibi) = \lambda(y_iz_i). \]

Thus \(\lambda(y_iz_i) = \lambda(y_iz_ia_i) \).
Also, \(\mu(z_1) \leq \mu(z_i \cdot b_i) \leq \mu(z_i z_i b_i) = \mu(z_i) \).

Thus \(\mu(z_i) = \mu(z_i b_i) \).

Hence, we have,

\[
(\lambda \mu)(x) \leq \bigvee (\lambda [\lambda (y_i z_i) \cdot \mu(z_i)]) = \bigvee (\lambda [\lambda (y_i z_i a_i) \cdot \mu(z_i b_i)])
\]

\[
= \bigvee (\lambda [\lambda (y_i') \cdot \mu(z_i')]) = (\lambda \mu)(x).
\]

It follows that \((\lambda \mu)(x) = \bigvee (\lambda [\lambda (y_i z_i) \cdot \mu(z_i)]) \)

for all \(x \in M \).

Lemma 3.3 Let \(M \) be a cyclic module over a weakly regular ring \(R \). Then any element \(\sum y_i z_i \), where \(y_i \in M \) and \(z_i \in R \), of \(M \) can be written as \(yz \) where \(y \) is the generator of \(M \) and \(z \) is an element of \(R \) which satisfies the inequality

\[\mu(z) \geq \mu(z_i) \]

for all fuzzy ideals \(\mu \) of \(R \).

Proof We have \(y_i = y z_i' \), where \(y \) is the generator of \(M \) and \(z_i' \in R \). Thus, \(\sum y_i z_i = \sum (y z_i') = \sum y(z_i' z_i) = y \sum z_i z_i' \).

\[\sum z_i' z_i \in R \), call it \(z \).

Thus \(\sum y_i z_i \) can be written as \(y z \).

Again, \(\mu(z) = \mu(\sum z_i' z_i) \geq \mu(z_i' z_i) \geq \mu(z_i) \).

Thus \(\mu(z) \geq \mu(z_i) \) for all fuzzy ideals \(\mu \) of \(R \).
Proposition 3.3 If M is a cyclic module over a weakly regular ring R then M is fuzzy normal over R.

Proof We have to prove that for all $x \in M$

$$(\lambda \circ \mu)(x) = [\lambda \land (\lambda \circ \mu)](x)$$

where λ is any fuzzy submodule of M and μ is any ideal of R. Note that λ denotes the fuzzy function

$$M(x) = 1 \text{ for all } x \in M.$$

From Lemma 3.2 we have

$$
(\lambda \circ \mu)(x) = \bigvee_{x = \sum y_i z_i} \left(\left(\lambda \left(\sum y_i z_i \right) \right) \land \left(\mu \left(z_i \right) \right) \right)
$$

$$= \bigvee_{x = \sum y_i z_i} \left(\left(\lambda \left(\sum y_i z_i \right) \right) \land \left(\mu \left(z_i \right) \right) \right)

\leq \bigvee_{x = \sum y_i z_i} \left(\lambda(x) \land \left(\mu \left(z_i \right) \right) \right)

$$

Now, using Lemma 3.3, we have

$$
(\lambda \circ \mu)(x) \leq \bigvee_{x = yz} (\lambda(yz) \land \mu(z))
$$

where $x = yz$ and $\mu(z) \geq \mu(z_i)$.

Finally, from (4),

$$
(\lambda \circ \mu)(x) \leq \bigvee_{x = yz} (\lambda(yz) \land \mu(z))
$$

$$
\leq \bigvee_{x = \sum y_i z_i} \left(\left(\lambda \left(\sum y_i z_i \right) \right) \land \left(\lambda \left(y z \right) \right) \right) = (\lambda \circ \mu)(x).
$$

Therefore,

$$
(\lambda \circ \mu)(x) = \bigvee_{x = yz} (\lambda(yz) \land \mu(z))
$$

$$= \bigvee_{x = yz} (\lambda(x) \land \mu(z)) = \lambda(x) \land \bigvee_{x = yz} \mu(z)
$$

by using the infinite meet distributive law.

Now,

$$
\mu \left(\sum y_i z_i \right) \leq \mu(z)
$$

$$x = \sum y_i z_i \quad x = yz
$$

and $A = \left\{ \mu(z_i) : x = \sum y_i z_i \right\}$, $A' = \left\{ \mu(z) : x = yz \right\}$.
Since A' is contained in A, therefore,
\[\vee (\mu(z_i)) = \vee (\mu(z_i)) \]
\[= \sum y_i z_i \]
\[= y z \]

Thus, (5) becomes
\[(\lambda \mu)(x) = \lambda(x) \vee (\gamma \mu(z_i)) \]
\[= \gamma \sum y_i z_i \]
\[= \gamma \sum y_i z_i \]

(6)

We have,
\[(\lambda \mu)(x) = \gamma (\gamma \mu(z_i)) \]
\[= \gamma \sum y_i z_i \]

(7)

Substituting (7) in (6), we have,
\[(\lambda \mu)(x) = \lambda(x) \gamma (\gamma \mu(z_i)) = (\lambda \gamma \mu)(x) \]

Thus, M is fuzzy normal over R.

We now add a remark.

Remark. If R denotes the fuzzy function defined by $R(x) = 1$ for all $x \in R$, then, for all fuzzy ideals μ of a ring R, $\gamma \mu = \mu$. This holds, since, for $x \in R$, we have
\[(\gamma \mu)(x) = \gamma (\gamma \mu(z_i)) \]
\[= \gamma \sum y_i z_i \]
\[= \gamma \sum y_i z_i \]

(8)

Since $x = 1x$ is one of the factorizations of x and also, since $\mu(x) = \mu(\sum y_i z_i) \geq \gamma \mu(z_i)$, it follows that

(9)

Finally, we prove the following characterization theorem for weakly regular rings.
Theorem 3.2 The following assertions for R are equivalent:

(1) R is (right) weakly regular;

(2) Each cyclic right R-module is fuzzy normal;

(3) \hat{R} is fuzzy normal.

Proof (1) \Rightarrow (2). This follows from Proposition 3.3

(2) \Rightarrow (3). This is immediate.

(3) \Rightarrow (1) Let μ be a fuzzy ideal of R. We prove that μ is t-pure, that is, for any fuzzy right ideal λ of R,

$\lambda\cap\mu=\lambda\mu$, by Definition 2.5. Since \hat{R} is fuzzy normal, λ is pure in the sense of Definition 2.6. Hence

$\lambda\cap(\hat{R}\mu)=\lambda\mu$.

Since $\hat{R}\mu=\mu$, it follows that $\lambda\mu=\lambda\cap(\hat{R}\mu)=\lambda\mu$. Hence μ is t-pure and so, by Theorem 3.1, R is weakly regular.

REFERENCES

[12] L.A. Zadeh; Fuzzy sets; Information and Control; 8(1965); 338-353.

* Department of Mathematical Sciences
King Fahd University of Petroleum & Minerals

DHAHRAN:31261
SAUDI ARABIA.

** Department of Mathematics
Quaid-I-Azam University

ISLAMABAD
PAKISTAN.