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Absfract

We apply von Neumann’s alternating projection algorithm to find a decom-
position, with respect to two convex sets X and Y, of a given element in the
Minkowski sum X +Y. We consider also the problem of finding the best decom-

position, that is to say, the one that has least deviation. The latter problem is
solved by adapting Dykstra’s alternating projection method.
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1 Introduction.

This note is a complement to previous works by Martinez-Legaz and Seeger [MS],
and Luc, Martinez-Legaz and Seeger [LMS]. We are concerned with the design of

algorithms that decompose a given vector z € H in the form
z=z+4+y, with t€X and ye€Y, (1.1)

where X and Y are two nonempty closed convex sets in a Hilbert space (H, ().
Such kind of decomposition problem arises in optimization, linear algebra, statistics,

and other areas.

The element z is decomposable in the form (1.1) if and only if z belongs to the

Minkowski sum
X+Y:i={s+y:zeX, yeVY}).
In such a case, however, the decomposition (1.1) need not be unique. For this reason

we address also the question of finding the best decomposition in the set
D(z):={(z,y) e X xY :z=2+y)}. (1.2)
As in [LMS], we understand the term “best” in the sense of least deviation.

Definition 1.1 [LMS]. The pair (%,5) € H x H is called a least deviation decompo-

sition of z if

{ (z,9) € D(2), 13)

IZ =3l < llz = yl| for all (z,y) € D(2).
In the above definition || || is the norm associated to the inner product (-,-). Thus,
each z € X + Y admits a unique least deviation decomposition. Least deviation is

a natural criterion to use when it comes to selecting one particular decomposition in
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D(z). The concept of least deviation decomposition enjoys many interesting theoret-
ical properties; for instance, it can be scen as an extension of the celebrated Moreau

orthogonal decomposition with respect to a pair of mutually polar cones.

As explained in Section 3, one way to construct the least deviation decomposition
(7,9) of z € X +Y is by finding the projection of a given point in a Hilbert space
onto the nonempty intersection of two closed convex sets. Algorithms for solving this
abstract projection problem have been extensively discussed in the literature. For
the sake of completeness in the exposition, we record in the Appendix two results
taken from Bauschke and Borwein [BB32]. The first result deals with von Neumann’s

alternating projection algorithm, and the second one deals with Dykstra’s algorithm.
2 Finding an Admissible Decomposition.

2.1 Introducing Algorithm A1l. It is always assumed that X and Y are

two nonempty closed convex sets in a Hilbert space (H, {-,-)). The class of such sets is

denoted by P(H).

As indicated in (1.2), the set D(z) contains all the (admissible) decompositions of

z. It is clear that D(z) can be written also in the form
D(z) = {(z,z2—2):z€ XN (2 -Y)}. (2.1)

Thus, the problem of decomposing z is equivalent to that of finding an element in the
intersection of X and z—Y. Such an element can be found by adapting von Neumann’s

alternating projection algorithm. Recall that the projection II x(f) of f € Honto X



is the unique solution of the minimization problem
dx(f) := min{||f — z|| : z € X}.

In this work it is assumed that the projection operators Ilx, Iy : H — H can be easily

evaluated.

Our first result concerns the following alternating projection method.

Algorithm A1: Choose any yo € H. For n > 1, compute

{ Ty = H,\'(Z - yn-l)’

Yn =y (z — z,). (22)

Theorem 2.1. Let X,Y € P(1l), and {(zny¥n)}n>1 be a sequence generated by Al-
gorithm A1. Then one has:

(a) {(mmyn)}nZI CX x Y;

(b) zn + yu — Mxzy(2), i.e. the sequence {zn + Yn}n>1 converges (strongly) to the

projection of z onto the closure of X + Y. In particular,
2 + yn — 2|l = dx4v(2);

(c) If € X +Y, then {(%n,Yn)}np1 converges weakly to some (z,y) € D(2).
Proof. We apply Lemma I (cf. Appendix) to the particular case A = X and B = z-Y.
If one writes

an =2, and b, =z —y,,
then von Neumann’s algorithm takes the form

{ Ty = “,\’(2 - yn—l),

_ , 2.3
z = Yn = oy (a). (23)
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But the second equality in (2.3) can be written as

Yn=2— Hz-—Y(wn)a
or, equivalently,
Yn = HY(‘z - wn)-

From the convergence result

(2 = yn) — Tu = Hz=p=x(0),
one gets

T+ yn = 2 — M=p=x(0) = Mx7p(2).

Finally, if z € X + Y, then the infimum
(X, z=Y)=inf{|lc-d||:z€ X, b€ z-Y}

is attained. Moreover,
0(X,z-Y)=dxsy(2) =0,
and
E={zeX:d,_y(z)=0}=XN(z-Y).

Thus, the sequence {x,}n>1 converges weakly to some z € X N (z - Y), and {yn}n31

converges weakly to y -—% z—a. D

Remark: Part (b) of Theorem 2.1 is proven by Franchetti and Light [FL, Lemma 3.2]

in the particular case in which X and Y are closed subspaces of H, and llyzy(2) €
X+Y.

2.2 Further Analysis on the Convergence of Algorithm Al.

In the context of this note, the most important part of Theorem 2.1 is the last one.
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Indeed, part (c) tells us how to construct an admissible decomposition for the vector
z € X +Y. Despite its astonishing simplicity, the Algorithm A1l generates a sequence
{(2n,yn)}np1 that converges weakly to some decomposition (z,y) € D(z). A natural
question is whether or not the convergence can actually be only weak. Conditions for
strong convergence can be obtained from the general theory of von Neumann sequences.

By way of example, one has

Proposition 2.1. The convergence in Theorem 2.1(c) is strong if any of the following

conditions hold:
(a) X orY is locally compact;
(b)) X andY are closed affine subspaces.

The conditions (a) and (b) mentioned in the above proposition are quite stringent in
practice. They ensure the strong convergence of {(y,yn)}n>1, no matter which is the
vector z € X + Y that we want to decompose. A much finer analysis is carried out in
the next proposition, where the particular choice of z is bring into consideration. Before
stating our result, it is convenient to recall first some notation and prove a technical
lemma. Given a convex set C in some Banach space V, the strong quasi-interior of C,

denoted by sqi(C), is the set of those ¢ € C for which

cone(C —c¢):= |J A (C —¢)
220
-
is a closed subspace in V. This concept plays an important role in the duality analysis
of abstract variational problerné (cf. [BL], [Vo], [AT]). Here it is used to state an open

mapping principle which extends the one due to Robinson [Ro, Theorem 1).

Lemma 2.1. Let U and V be Banach spaces, and let F : U — V be a set-valued

mapping whose graph is a closed convex set in the product space U x V. Suppose 0 is
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a strong quasi-interior point of the range R(F) of F. Then, for all u € F-1(0), there

exists a positive 1) such that

nSw C F(u + Sy), |

where Sy and Sw denote the closed unit balls in the spaces U and W := cone (R(F)),

respectively.

Proof. First of all, it is important to observe that W is a closed subspace of V. This is
because 0 € sqi(R(F")). Since R(F) C W, we regard F as a set-valued mapping from
U into W. This trick allows us to adjust Robinson’s proof [Ro, Theorem 1] in a rather
straightforward manner. For notational convenience, we set u.= 0. In this case, the
convex set F(Sy) C W contains the origin 0 € W. As in [Ro], one needs to prove that
F(Sy) is absorbing (not in V, but in the space W1). But, if w is any point in W\{0},

then the very definition of W implies that

pw € R(F) for some u > 0.
So, we are in fact in the same situation as in [Ro]. 0

The concept of linear convergence will be used also in the sequel. Recall that a

sequence {h,}n>1 in H is said to converge linearly to h € H if there are constants

B > 0 and é €]0,1] such that
||hn — h]] < B6" foralln >1.
The vector & is of course the (strong) limit of {hn}nx1.

Proposition 2.2. Let X,Y € P(H). Ifz € sqi(X+Y), then the sequence {(Zn,¥n)}np1
generated by Algorithm A1 converges linearly to some (z,y) € D(z). Moreover, {Zn}n>1

converges linearly to x, and {y,}n>1 converges linearly to y.

7



Proof. As mentioned in the proof of Theorem 2.1, the sequence {(znyyn)}np1 is
obtained by adjusting von Neumann’s algorithm to the sets A = X and B= 2 -Y.
According to Bauschke and Borwein [B31, Theorem 3.12], the von Neumann sequences
converge linearly if the pair (A, B) is boundedly linearly regular in the sense that for

each bounded set © C H, there exists a positive a such that
danB(v) < amax{d4(v),dg(v)} for allve O.

To check the above condition, we apply a technique developed in [BB1, Theorem 4.3].
However, some adjustments to this technique are in order. Consider the set-valued
mapping F' : H — H defined by
u—B ifue€A,
F(u) :=
¢ otherwise .

The graph of F is clearly a closed convex set in the product space H x H, and the

range of F'is

R(F)=A-B.
The “regularity” assumption z € sqi(X +Y) amounts to saying that

W= JMX+Y —z2)=|JAA- B)

A0 A>0

is a closed subspace in H. In other words, 0 is a strohg quasi-interior point of R(F).
Thus, we can apply Lemma 2.1 (contrary to [BB1], we do not rely on Borwein’s open
mapping theorem) to show that, for all u € F~(0) = AN B, there exists a positive n
such that

nSw C F(u+ Syg) = AN (u+ Sy) - B.

Now, we are going to apply [BB1, Lemma 4.2]. To do this, one needs first to observe
that

a—1Ilpla) e A-BCW forallac€ A,
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and, therefore,
llg(a) - a
15(a) - af

By applying [BB1, Lemma 4.2] one arrives at the following conclusion: for each u €

€Sw forallace A\B

AN B there is a positive 5 such that

”u.—U“ + 'ldB

danp(v) < ,

(v) forallve A.

As shown in the proof of [BB1, Theorem 4.3], the above condition leads us to the
bounded linear regularity of the pair (A, B). In this way we have shown that the
sequences {Tn}n>1 and {yn}n>1 converge linearly to £ € X and y € Y respectively.
The pair (z, y) is necessarily a decomposition of z € X+Y, and {(zn,yn)}np1 converges

linearly to (z,y). 0
Some remarks concerning Proposition 2.2 are in order:

(i) The éssumption z € 8qi(X+Y) plays an important role in the proof of Proposition
2.2. If z belongs to the interior of X + Y, then one does not need Lemma 2.1.
Indeed, it suffices to invoke the classical open mapping principle of Robinson [Ro,
Theorem 1]. If z belongs to the intrinsic core of X + Y, then the proof of [BB1,

Theorem 4.3] does not require major adjustments.

(ii) An interesting question which remains open is the following one: Is it possible
to find sets X,Y € P(H) and a vector z € (X + Y)\sqi(X + Y) such that the

weakly convergent sequence {(n,yn)}n>1 generated by Algorithm Al does not

converge strongly?

(iii) The assumption z € sqi(X +Y') is sufficient for {(2s,¥s)}n>1 to converge linearly.

Strong convergence may occur, however, even if z € sqi(X +Y). To see this, just
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take two closed afline subspaces X and Y whose sum X + Y is not closed. In

 this case the set sqi(X + Y') is empty, but one has strong convergence whenever

z€X +Y.

2.3 Introducing Algorithm A2. The set D(z) can be written also as the

intersection of the closed convex set X x Y and the closed affine subspace

A(z) = {(z,y)€eHxH:z+y=2z}
= (0,2) +{(z,~2z): 2z € H}.

This way of looking at D(z) leads us to the following

Algorithm A2: Choose any (zo,y0) € H x H. For n > 1, compute

¢ 1
€n = 5 [HX(wn—l) - HY(yﬂ—l)] ’
<z, = -g— 4+ €ny (24)
_z
| Yn = 2 - €n.

Before stating the main properties of the above algorithm, it is convenient to record

some technical results.
Lemma 2.2. Let X,Y € P(H). Then,
(a) The projection operator Ia(,): H x H — H x H is given by
z 2 c—d d—c
ag)(c,d) = (5, -2-) + ( 513 ) ; (2.5)

(b) The shortest distance §(X x Y, A(2)) between the sets X x Y and A(2) is given

by
(X x ¥, (2)) = min {dk(2) + d}(»)}, (2.6)
or, equivalently,
(X X YV, 00) = 3k y(a); (27)
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(¢) The pair (,7) is a solution to the minimization problem (2.6) if and only if

{i+g=z
[ - 1x)(&) = [I - Iy ](§),

where I : H — H stands for the identity operator;

(2.8)

(d) Let (%,§) be a solution to (2.6), and let p = [I — lx}(#). Then
Izm=7x7 (0,0) = Hag)-xxv(0,0) = (p,p).
Proof. The projection Ila(,)(c,d) is the solution to the minimization problem

dA(z)(c7 d) = (a:,gleig(z) ”(C, d) - (.’E, y)" (2‘9)

As a matter of computation one has

Bned) = mipl(e,d) = (2 =)

min{fle — 2| + |d - z + 2||*}.

Since the above minimum is attained at

c—d
2 b

T =

+

NN

the solution to (2.9) is given by (2.5). To obtain the formula (2.6), we write

PXxY,A() = if (ed) - (z,9)|’
(x,y)eA(z)

— M - 2 _ 2
= anf Alle=zl*+]ld —y|")
rty=s

— . : — »li2 : — 2
= i {miple= "+ gipla -t}

Formula (2.7) is obtained by writing

2 - : 2 — a2
6(X><Y,A(z))—(C,d)lg{,)w}g;g,{llc z|* + |ld - ylI°},

11



and by observing that the inner infimum is attained at

(m, y) = HA(,)(C, d)

To prove part (c), observe that the term on the right-hand side of (2.6) corresponds
to the infimal-convolution of the functions d% and d}. General results concerning the
attainment of an infimal-convolution (cf. [La, Chapter 6]) lead to the characterization

(2.8). Finally, consider part (d) of the lemma. The projection Ia(s)-xxy(0,0) is the

unique solution to the minimization problem

o = inf{||(p,9)|| : (»,q) € A(2) - X x Y}. (2.10)

To check that the above infimum is attained, pick up any solution (£,9) to (2.6). A

simple calculus shows that

o? = (X xY,A(2))

IMx (&) = 2|1* + Ty () - 1%,
or, equivalently,
a = ”(‘Eaﬂ) - (H,\'(i),ny(ﬁ))"

This means that the infimum in (2.10) is attained at

(P,Q) = (i,ﬂ)—(ﬂx(i),ﬂy(,ﬁ))

= ([ - Ix)(@), [I - Ty )(§)).

It is fairly clear that the same pair (p,q) characterizes the projection of (0,0) onto

A(z) — X x Y. To complete the proof it suffices to observe that p = g. o

Now we are ready to state:



Theorem 2.2. Let X,Y € P(H) and let {(Tn,yn)}np1 be a sequence generated by
Algorithm A2. Then,

(a) {(mmyn)}nzl C A(z);

(b) Mx(zn) + Iy (ya) = 2 — 2[I — Ix](%) = z — 2[I — Iy |(§), where (£,§) is a pair

at which the infimal-convolution (2.6) is attained. In particular,

ITLx (2a) + Ty (ya) = 2|| = dx4v(2);

(c) If z € X +Y, then both sequences {(zn,yn)}np1 and {(IIx(z,), Iy (yn)) }np1

converge weakly to some (z,y) € D(z).

Proof. We apply again Lemma I (cf. Appendix), but this time we choose A = X x Y

and B = A(z). The terms of the von Neumann sequences are generated by

cmdn = II A Tn- n—-
{ ( ) xxY (Tn-1yYn-1), (@.11)
(Tns¥n) = HA(:)(Cmdn)o
The first equality in (2.11) splits into
cn = x(2n-1) and d, = Iy (yn-1), (2.12)

and, according to Lemma 2.2(a), the second equality in (2.11) can be written in the

form 1
z
Tn = '2’+§[cn_dn],
z 1
= gl

(2.13)

Algorithm A2 is, of course, a combination of (2.12) and (2.13). Part (a) of the theorem

just says that

Tp+y,=2 foralln>1,
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which is immediate from (2.13). Consider now part (b). According to Lemma I,

(®nyYn) — (cnydy) converges to U xm=%x7(0,0). But,

(Zny Yn) = (Ca,dn) = (g ;;_) _ (cn tdn ot dn) |

2 2
and
Nz (0,0) = ([ — Tx](), [T - Ix](2)).
Hence .
Cn + dy — 2 = 2[1 - lIx](Z).

- We know also that

”("vmyn) - (Cm dN)” - 6()( xY, A(Z))

But, according to Lemma 2.2(b), this is equivalent to

2
cn + d, 4

2 2

1

2 - §d§{+Y(z).

This takes care of the part (b). Finally, if z € X + Y, then §(X x Y. A(2)) =0, and
E=F=XxYnA(2).

Lemma [ ensures the weak convergence of the sequences {(zn, ¥n)}n21 and {(cn, dn)}n>1

toward some (z,y) € X x Y N A(2). 0.

3 Finding The Least Deviation Decomposition.

This section deals with the problem of finding the least deviation decomposition of
a given vector z € X + Y. The first algorithm that we are going to consider is based

on the following result.
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Lemma 3.1. [LMS]. Let X,Y € P(H) and z € X +Y. Then the following statements

are equivalent:

(a) (Z,7) is the least deviation decomposition of z;

(b) T and § are the projections of z/2 onto XN(z=Y) and Y N(z—X), respectively,

i.e.

{ f:Argmin{"';’-‘l’": xeXﬂ(Z—Y)}’ (3.1)

7= Argmin{|z —y|: ye ¥ n(z - X)},

As indicated in the above lemma, to find the component  one needs to compute the
projection of z/2 onto the intersection of X and z — Y. This can be done by adapting

Dykstra’s alternating projection algorithm. One gets in this way:
g 3

Algorithm A3. Take up = vg = 0 and yo = z/2. For n > 1, compute
( Tp = HX(z = Yn-1+ un-—l)a
Up = 2 = Yn—t — Tp + Up-y,

J | (3.2)
Yn = H)’(z -y + vn—l)a

L Un =2 = Yn — Tp + Up-1.
Theorem 3.1. Let X,Y € P(H), and let {(xn,yn)}n>1 be the sequence generated by

Algorithm A:? Then,
(@) {(zn,yn)}np1 C X x Y
() @n + 4o — Hggp(2). Tn particular, [|on + Yo — 2| — dxsy(2);
(c) Ifz€ X +Y, then {(Tn,yn)}n>1 convewyes‘(strongly) to the least deviation de-
composition (T,7) of z.

Proof. We apply Lemma II (cf. Appendix) to the particular case A = X and B =

z — Y. For convenience, one changes variables in the way indicated below:
Ay & Ty bn"—z"'yn
Pn &= Uy, Qn & —Uy.
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The rest of the proof is similar to that of Theorem 2.1. (]

Algorithm A3 has some advantages over Algorithm Al. First of all, the sequence
{(n,yn)}n>1 converges to a very special admissible decomposition of 2. Indeed, it
converges to the best one, namely, the least deviation decomposition of z. Second, the

convergence is not only in the weak sense, but also in the strong one.

The algorithm discussed next is based on a different characterization of the concept

of least deviation decomposition.

Lemma 3.2. [LMS]. Let X,Y € P(H) and z € X +Y. Then the following statements

are equivalent:
(a) (%,7) is the least deviation decomposition of z;
(b) (Z,7) is the projection of (0,0) onto D(z).

So, to find the pair (Z,%) one needs to project the origin (0,0) € H x H onto the

intersection of X X Y and A(z). This observation leads us to the following

Algorithm A4. Take pp =g =up=vp =29 =1 = 0. Forn > 1, compute

( Cn = H;\'(wn—l + pn-—l)a

dn = H)’(yn-—l + qn—l),

Pn = Tnaq + Pn-1 — Cn,

In = Yn—1+ qn-1 — dm

{ € = (cn + Upy — dn. - vn—l)/27 (3.3)
z

Tp = = + €y,

2
=z
yn_2

— en’

Up = Cp + Up—1 — Ty,

\ Un = dn + Upe1 = Yn.
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The limiting behavior of the main sequences {(zn, ¥n)}n>1 and {(cn,dn)}np1 is dis-
cussed in the next theorem. The other sequences in (3.3) are only auxiliary and do not

deserve further discussion.

Theorem 3.2. Let X,Y € P(H), and let {(zn,yn)}nz1 and {(cn,dn)}np1 be the

sequences generated by Algorithm A4. If z € X + Y, then both sequences converge

(strongly) to the least deviation decomposition (Z,F) of z.

Proof. We apply Lemma II (c[. Appendix) to the case A = X x Y and B = A(z).

Dykstra’s algorithm takes the form

(cm dn) = HX xY((wn—l ’ yn-l) + (pn-—la Qn—l)),
(pn,Qn) = (wn-—layn—l) + (pn—l,Qn—l) - (cm dn)’
(xn, yn) = HA(:)((cm dn) + (un-—la vn—l))’

(um'vn) = (cmdn) + (un—l,vn—l) - (xrn yn)*

All these equalities occur in the product space H x H. After decoupling and rearranging

in a suitable way, one ends up with the relations given in (3.3). If z € X + Y, then
E=F=XxYnA(2),

and the sequences {(2s,yn)}n>1 and {(cq,dy)}n»1 converge to the projection of (0,0)
onto X x Y N A(z). o

Appendix

The following two results have played a key role in our work. The first one deals

with von Neumann’s alternating projection algorithm.
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Lemma I. (BB2, Theorem 4.8]). Let H be a Iilbert space, and let A,B € P(H).

Choose any by € H and define the terms of the von Neumann sequences by
an = Il4(bn-1), by =Ilg(a,) foralln>1.
Then bn — an, — IIg=%(0). In particular,
lbn — as|| — 6(A,B) :=inf{|la—b|| : a € A, be B}.

If the above infimum is attained, then (a,,b,) converges weakly to some pair (a*,b%)

such that

b‘—q‘ = Hm(O),
a"€E: = {a€A: dg(a)=6(A,B)},

t'eF: = {beB: dyb) =54, B))

The second result deals with Dykstra’s alternating projection algorithm.

Lemma II. ([BB2, Theorem 3.8]). Let M be a Hilbert space, and let A,B € P(H).
Take po = go = 0 and bo = w, where w is any point in M. For n > 1, define the terms

of the Dykstra sequences by

&
3
i

= (bao1 + Pr-1),

Pn = buci 4 P —ap,
b, = Ip(a, + Gn-1);
G = n+ gn-1 ~ b

Then, b, — an — Ig=(0). In particular,

6n — anll = 6(A, B) := inf{lla— b|| : a € A, b€ B}.
18



If the above infimum is attained, then
a, = lg(w) and b, — Mp(w),

where E and F are as in Lemma L.
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