On Semi-Weakly Semi-Continuous Mappings

Raja Mohammad Latif
ON SEMI-WEAKLY SEMI-CONTINUOUS MAPPINGS

By

RAJA MOHAMMAD LATIF

Department of Mathematical Sciences,
King Fahd University of Petroleum & Minerals,
Dhahran 31261, Saudi Arabia.

Abstract: We introduce semi-weakly semi-continuous mappings and investigate some of their properties.

1. Introduction

In 1985, T. Noiri and B. Ahmad [Noiri & Ahmad; 1985] introduced the concept of semi-weakly continuous mappings and studied their several properties. The purpose of the present note is to introduce a new class of mappings called semi-weakly semi-continuous mappings and investigate some properties analogous to those given in [Noiri & Ahmad; 1985] and [Noiri; 1974] concerning semi-weakly continuous and weakly continuous mappings respectively.

2. Preliminaries

Let X be a topological space and let S be a subset of X. The closure and the interior of S are denoted by Cl(S) and Int(S) respectively. A subset S is said to be semi-open [Levine; 1963] if there exists an open set U such that U \subseteq S \subseteq Cl(U). S\text{O}(X) will denote the class of all semi-open sets in a topological space X. The complement of a semi-open set is called semi-closed. The union of all semi-open subsets of X contained in S is called the semi-interior of S and denoted by sInt(S). The intersection of all semi-closed subsets of X containing S is called the semi-closure of S and denoted by sCl(S).

1991 Mathematics Subject Classification: Primary 54C; Secondary 54H.

Keywords and phrases: Topological space, semi-open set, semi-closed set, semi-weakly semi-continuous mapping, irresolute, semi-weakly continuous mapping, S-connected space, T_2-space, semi-T_2 space, Urysohn space, s-Urysohn space.
Throughout this note, X and Y denote topological spaces, and by \(f : X \to Y \) we denote a mapping \(f \) of a space \(X \) into a space \(Y \).

3. Semi-weakly semi-continuous mappings

Definition 1. A mapping \(f : X \to Y \) is called semi-weakly semi-continuous (briefly s.w.s.c.) if for each point \(x \in X \) and each semi-open set \(V \subseteq Y \) containing \(f(x) \), there exists a semi-open set \(U \subseteq X \) containing \(x \) such that \(f(U) \subseteq sCl(V) \).

Definition 2. A mapping \(f : X \to Y \) is called an irresolute if and only if the inverse image of each semi-open set in \(Y \) is a semi-open set in \(X \).

Theorem 3. [Latif; 1993]. A mapping \(f : X \to Y \) is called an irresolute if and only if for each point \(x \in X \) and each semi-open set \(V \) containing \(f(x) \) there exists a semi-open set \(U \) containing \(x \) such that \(f(U) \subseteq V \).

Theorem 4. Let \(f : X \to Y \) be an irresolute. Then \(f \) is semi-weakly semi-continuous.

Proof. By using theorem 3, the result follows immediately.

The following example shows that the converse of theorem 4 may not be true in general.

Example 5. Let \(X = \{ 1, 2, 3 \} \). Let \(T^* = \{ \emptyset, \{1\}, X \} \) and \(T = \{ \emptyset, \{2\}, \{1, 2\}, X \} \) be topologies on \(X \). Let \(Id_X : (X, T^*) \to (X, T) \) be the identity map. Then \(Id_X \) is not an irresolute. We note that \(Id_X \) is semi-weakly semi-continuous because \(sCl(\{2\}) = X \) in \((X, T) \).

Definition 6. [Noiri, Ahmad; 1985]. A mapping \(f : X \to Y \) is called semi-weakly continuous (briefly s.w.c.) if for each point \(x \in X \) and each open set \(V \subseteq Y \) containing \(f(x) \), there exists a semi-open set \(U \subseteq X \) containing \(x \) such that \(f(U) \subseteq sCl(V) \).
Theorem 7. Let \(f : X \to Y \) be semi-weakly semi-continuous. Then \(f \) is semi-
weakly continuous.

Proof. Note that every open set is a semi-open set.

The next example reveals that the converse of theorem 7 may not be true in general.

Example 8. Let \(X = \{ 1, 2, 3 \} \) and \(Y = \{ 1, 2, 3 \} \). Let \(T = \{ \emptyset, \{ 1 \}, X \} \) and \(T^* = \{ \emptyset, \{ 1 \}, \{ 2 \}, \{ 1, 2 \}, Y \} \) be topologies on \(X \) and \(Y \) respectively. Define \(f : X \to Y \) by \(f(1) = f(2) = 1, f(3) = 3 \). be the identity map. Then clearly \(f \) is semi-
weakly continuous. Note that \(f(3) = 3 \in \{ 2, 3 \} \in SO(Y) \). The semi-open sets in \(X \)
containing \(3 \) are only \(\{ 1, 3 \} \) and \(X \). Now \(f(\{ 1, 3 \}) = \{ 1, 3 \} \) and \(sCl(\{ 2, 3 \}) = \{ 2, 3 \} \). Thus \(f(\{ 1, 3 \}) \nsubseteq sCl(\{ 2, 3 \}) \). Hence \(f \) is not semi-weakly semi-continuous.

Theorem 9. Let \(f : X \to Y \) be semi-weakly continuous. Then
\[
sCl[f^{-1}(V)] \subseteq f^{-1}[Cl(V)]
\]
for each semi-open set \(V \subseteq Y \).

Proof. Suppose there exists a point \(x \in sCl[f^{-1}(V)] \setminus f^{-1}[Cl(V)] \). Then \(f(x) \nsubseteq Cl(V) \). Hence there exists an open set \(W \) containing \(f(x) \) such that \(W \cap V = \emptyset \).

Since \(V \) is semi-open, we have \(V \cap sCl(W) = \emptyset \). Since \(f \) is semi-weekly
continuous, there exists a semi-open set \(U \subseteq X \) containing \(x \) such that \(f(U) \subseteq sCl(W) \). Thus we obtain \(f(U) \cap V = \emptyset \). On the other hand, since \(x \in sCl[f^{-1}(V)] \), we have \(U \cap f^{-1}(V) \neq \emptyset \) and hence \(f(U) \cap V \neq \emptyset \). We have a contradiction. Therefore we have \(sCl[f^{-1}(V)] \subseteq f^{-1}[Cl(V)] \).

Theorem 10. Let \(f : X \to Y \) be semi-weakly semi-continuous. Then
\[
sCl[f^{-1}(V)] \subseteq f^{-1}[sCl(V)]
\]
for each semi-open set \(V \subseteq Y \).

Proof. Suppose there exists a point \(x \in sCl[f^{-1}(V)] \setminus f^{-1}[sCl(V)] \). Then \(f(x) \nsubseteq sCl(V) \). Hence there exists a semi-open set \(W \) containing \(f(x) \) such that \(W \cap V = \emptyset \). Since \(V \) is semi-open, we have \(V \cap sCl(W) = \emptyset \). Since \(f \) is semi-weekly
semi-continuous, there exists a semi-open set \(U \subseteq X \) containing \(x \) such that \(f(U) \subseteq sCl(W) \). Thus we obtain \(f(U) \cap V = \emptyset \).
On the other hand, since \(x \in s\text{Cl}(f^{-1}(V)) \), we have \(U \cap f^{-1}(V) \neq \emptyset \) and hence \(f(U) \cap V \neq \emptyset \). We have a contradiction. Thus we have \(s\text{Cl}(f^{-1}(V)) \subseteq f^{-1}[s\text{Cl}(V)] \).

Theorem 11. Prove that a mapping \(f : X \to Y \) is semi-weakly semi-continuous if and only if for every semi-open set \(T \) in \(Y \) \(f^{-1}(T) \subseteq s\text{Int}[f^{-1}(s\text{Cl}(T))] \).

Proof. Let \(x \in X \) and \(T \) a semi-open set containing \(f(x) \). Then \(f(x) \in f^{-1}(T) \subseteq s\text{Int}[f^{-1}(s\text{Cl}(T))] \). Put \(S = s\text{Int}[f^{-1}(s\text{Cl}(T))] \). Then \(S \) is semi-open and \(f(S) \subseteq s\text{Cl}(T) \). This shows that \(f \) is semi-weakly semi-continuous.

Conversely, let \(T \) be a semi-open set of \(Y \) and \(x \in f^{-1}(T) \). Then there exists a semi-open set \(S \) in \(X \) such that \(x \in S \) and \(f(S) \subseteq s\text{Cl}(T) \). Therefore we have \(x \in S \subseteq f^{-1}[s\text{Cl}(T)] \) and hence \(x \in s\text{Int}[f^{-1}(s\text{Cl}(T))] \). This proves that \(f^{-1}(T) \subseteq s\text{Int}[f^{-1}(s\text{Cl}(T))] \).

Theorem 12. Let \(f : X \to Y \) be a mapping and \(g : X \to X \times Y \) be the graph mapping of \(f \), given by \(g(x) = (x, f(x)) \) for every point \(x \in X \). If \(g \) is semi-weakly semi-continuous, then \(f \) is semi-weakly semi-continuous.

Proof. Let \(x \in X \) and \(T \) be any semi-open set containing \(f(x) \). Then by theorem 11 of [Levine; 1963], \(X \times T \) is a semi-open set in \(X \times Y \) containing \(g(x) \). Since \(g \) is semi-weakly semi-continuous, there exists a semi-open set \(S \) containing \(x \) such that \(g(S) \subseteq s\text{Cl}(X \times T) \). It follows from lemma 4 of [Noiri; 1978] that \(s\text{Cl}(X \times T) \subseteq X \times s\text{Cl}(T) \). Since \(g \) is the graph mapping of \(f \), we have \(f(S) \subseteq s\text{Cl}(T) \). This shows that \(f \) is semi-weakly semi-continuous.

Definition 13. A space \((X, T)\) is semi-T\(_2\) if and only if for every \(x, y \in X \) such that \(x \neq y \), there exist disjoint semi-open sets \(U \) and \(V \) such that \(x \in U \) and \(y \in V \).

Theorem 14. If \(f : X \to Y \) is a semi-weakly semi-continuous mapping and \(Y \) is semi-T\(_2\), then the graph \(G(f) \) is a semi-closed set of \(X \times Y \).

Proof. Let \((x, y) \in G(f)\). Then, we have \(y \neq f(x) \). Since \(Y \) is semi-T\(_2\), there exist disjoint semi-open sets \(S \) and \(T \) such that \(f(x) \in S \) and \(y \in T \). Since \(f \) is semi-weakly semi-continuous, there exists a semi-open set \(R \) containing \(x \) such that \(f(R) \)
\(\subseteq \text{sCl}(S) \). Since \(S \) and \(T \) are disjoint, we have \(T \cap \text{sCl}(S) = \emptyset \) and hence \(T \cap f(R) = \emptyset \). This shows that \((R \times T) \cap G(f) = \emptyset \). It follows from theorem 2 and 11 in [Levine; 1963] that \(G(f) \) is semi-closed.

Definition 15. By a semi-weakly semi-continuous retraction, we mean a semi-weakly semi-continuous mapping \(f : X \to A \), where \(A \subseteq X \) and \(f/A \) is the identity mapping on \(A \).

Theorem 16. Let \(A \subseteq X \) and \(f : X \to A \) be a semi-weakly semi-continuous retraction of \(X \) onto \(A \). If \(X \) is a Hausdorff space then \(A \) is a semi-closed set in \(X \).

Proof. Note that \(f \) is semi-weakly continuous by theorem 7. Now the result follows from theorem 4 of [Noiri & Ahmad; 1985].

4. S-Connected Spaces

Definition 17. [Thompson; 1981]. A space \(X \) is said to be S-connected if \(X \) cannot be written as the disjoint union of two non-empty semi-open sets.

It is already known that S-connectedness is invariant under semi-continuous surjections. Our next result shows that S-connectedness is invariant under semi-weakly semi-continuous surjections.

Theorem 18. If \(X \) is an S-connected space and \(f : X \to Y \) is a semi-weakly semi-continuous surjection, then \(Y \) is S-connected.

Proof. Suppose \(Y \) is not S-connected. Then there exist non-empty semi-open sets \(V_1 \) and \(V_2 \) of \(Y \) such that \(V_1 \cap V_2 = \emptyset \) and \(V_1 \cup V_2 = Y \). Hence we have \(f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset \) and \(f^{-1}(V_1) \cup f^{-1}(V_2) = X \). Since \(f \) is surjective, \(f^{-1}(V_i) \neq \emptyset \) for \(i = 1, 2 \). By theorem 11, we have \(f^{-1}(V_i) \subseteq \text{sInt}(f^{-1}(\text{sCl}(V_i))) \) because \(f \) is semi-weakly semi-continuous. Since \(V_i \) is semi-open and also semi-closed, we have \(f^{-1}(V_i) \subseteq \text{sInt}(f^{-1}(V_i)) \). Hence \(f^{-1}(V_i) \) is semi-open for \(i = 1, 2 \). This implies that \(X \) is not S-connected. This is contrary to the hypothesis that \(X \) is S-connected. Therefore \(Y \) is S-connected.
Definition 19. A space X is called a Urysohn space if for every pair of distinct points x and y in X, there exist open sets U and V in X such that $x \in U$, $y \in V$ and $\text{Cl}(U) \cap \text{Cl}(V) = \emptyset$.

Theorem 20. If Y is Urysohn space and $f : X \to Y$ is a semi-weakly continuous injection, then X is semi-T_2 space.

Proof. For any distinct points $x_1, x_2 \in X$, we have $f(x_1) \neq f(x_2)$ because f is injective. Since Y is Urysohn, there exist open sets V_1 and V_2 in Y such that $f(x_1) \in V_1$, $f(x_2) \in V_2$ and $\text{Cl}(V_1) \cap \text{Cl}(V_2) = \emptyset$. Then $s\text{Cl}(V_1) \cap s\text{Cl}(V_2) = \emptyset$ since $s\text{Cl}(V_j) \subseteq \text{Cl}(V_j)$ for $j = 1, 2$. Hence we have $s\text{Int}[f^{-1}(s\text{Cl}(V_1))] \cap s\text{Int}[f^{-1}(s\text{Cl}(V_2))] = \emptyset$. Since f is semi-weakly continuous, so by theorem 1 of [Noiri & Ahmad; 1985], we have $x_j \in f^{-1}(V_j) \subseteq s\text{Int}[f^{-1}(s\text{Cl}(V_j))]$ for $j = 1, 2$. This implies that X is semi-T_2.

Definition 21. A topological space (X, T) is said to be s-Urysohn if for each pair x, y of distinct points in X, there exist $U, V \in S(X)$ such that $x \in U$, $y \in V$ and $\text{Cl}(U) \cap \text{Cl}(V) = \emptyset$.

Theorem 22. If Y is a s-Urysohn space and $f : X \to Y$ is a semi-weakly semi-continuous injection, then X is semi-T_2.

Proof. For any distinct points $x, y \in X$, we have $f(x) \neq f(y)$ because f is injective. Since Y is s-Urysohn, there exist semi-open sets U and V in Y such that $f(x) \in U$, $f(y) \in V$ and $\text{Cl}(U) \cap \text{Cl}(V) = \emptyset$. Hence we have $s\text{Int}[f^{-1}(s\text{Cl}(U))] \cap s\text{Int}[f^{-1}(s\text{Cl}(V))] = \emptyset$. Since f is semi-weakly semi-continuous, so by theorem 11, we have $x \in f^{-1}(U) \subseteq s\text{Int}[f^{-1}(s\text{Cl}(U))]$ and $y \in f^{-1}(V) \subseteq s\text{Int}[f^{-1}(s\text{Cl}(V))]$. This implies that X is semi-T_2.

Theorem 23. If X is an S-connected space and $f : X \to Y$ is an irresolute mapping with the semi-closed graph, then f is constant.

Proof. Suppose that f is not constant. Then there exist distinct points x, y in X such that $f(x) \neq f(y)$. Since the graph $G(f)$ is semi-closed and $(x, f(y))$ is not in $G(f)$, there exist semi-open sets U and V containing x and $f(y)$, respectively, such that $f(U) \cap V = \emptyset$. Since f is irresolute, U and $f^{-1}(V)$ are disjoint non-empty semi-
open sets. It follows from theorem 17 of [Thompson; 1981] that X is not S-connected. Therefore, f is constant.

Corollary 24. Let X be irreducible. If f : X \rightarrow Y is an irresolute mapping with the semi-closed graph, then f is constant.

ACKNOWLEDGMENT

The author is highly indebted to the University of Alberta and the King Fahd University of Petroleum and Minerals for providing financial aid and all necessary research facilities during the preparation of this paper.

REFERENCES

Department of Mathematical Sciences
King Fahd University of Petroleum & Minerals
Dhahran 31261, Saudi Arabia.