Duo rings and finite representation type

A. Laradji
Duo rings and finite representation type

A. Laradji

Abstract

In this note, we prove through a short and direct argument, that for a left pure semisimple ring R, R is left (resp. right) serial if and only if it is left (resp. right) duo. As a corollary we obtain that if R is a counter-example to the pure semisimple conjecture, then it cannot be a duo ring.

1. Introduction. Throughout, R is a ring with identity and $J = J(R)$ is its Jacobson radical; and, unless stated otherwise, all modules are left unital. Consider the following conditions.

(i) R is artinian serial.
(ii) R has finite representation type.
(iii) R is left pure semisimple, that is, every R–module is pure-injective.

It is well-known that the implications $(i) \Rightarrow (ii) \Rightarrow (iii)$ are always true, and that, if R is commutative, their converses hold as well (see for example [3, 12]). The equivalence of (iii) and (ii) for arbitrary rings, known as the pure semisimple conjecture, has so far eluded all attempts of proof, but has been established for
several types of non-commutative rings (e.g. Artin algebras) mainly through the
use of dualities and homological methods. We refer to [1, 4, 5, 6, 12] for more
details.

In another direction, various authors have described classes of rings for which
duoness implies that they are serial (see for example [7, 10]). The aim of this note
is to discuss by using a direct, non-homological argument, the above conditions
for left (or right) duo rings. As a corollary, we obtain that (iii)⇒(i) for duo rings,
providing yet another evidence as to the truth of the pure semisimple conjecture.
Let us first recall some definitions. Following Warfield [8], we say that a module
is serial if its submodules are linearly ordered by inclusion. The ring R is left
(resp. right) serial if it is a direct sum of serial modules, and is serial if it is both
left and right serial. If R has only finitely many non-isomorphic indecomposable
left modules, it is said to have finite representation type. (It is known that finite
representation type is left-right symmetric.) We say that R is left (resp. right)
duo if each left (resp. right) ideal is two-sided, and that it is duo if it is both left
and right duo.

2. Results. The main result is the following

Theorem. Let R be a left pure semisimple ring. Then R is left (resp. right) duo
if and only if it is left (resp. right) serial.

Proof. Since R is left pure semisimple, RR is Σ — pure-injective and so, by [11],
R is semiprimary. Suppose first that R is left (resp. right) duo, then by [2], R is
a finite direct sum of left duo local rings R_n. Furthermore, R is easily seen to be
left pure semisimple if, and only if, each \(R_n \) is left pure semisimple. We may thus assume that \(R \) itself is a left (resp. right) duo local ring with maximal ideal \(J \). If \(R/J \) is finite, then \(R/J \) is clearly a field, and we infer from [6] that \(R \) is serial. Suppose therefore that \(R/J \) is infinite, and let \(H \) be an infinite subset of \(R/J \) whose elements are distinct modulo \(J \). The proof of the 'only if' part is complete once we show that the two-sided ideals of \(R \) are linearly ordered with respect to inclusion. Let \(u, v \) be in \(J \), we prove that either \(u \in RuR \) or \(v \in RuR \). For each \(h \in H \), set

\[
R_h = \begin{cases}
R_r & \text{if } R \text{ is left duo} \\
r_hR & \text{if } R \text{ is right duo}
\end{cases}
\]

where \(r_h = u - vh \), and let \(M_h = R/R_h \), \(P = \prod_{h \in H} M_h \), \(S = \bigoplus_{h \in H} M_h \). Denote by \(q_h (h \in H) \) the canonical composition \(P \xrightarrow{\text{proj}} M_h \xrightarrow{\text{incl}} S \), let \(\mu \in P \) be given by \(\mu(h) = 1 + R_h (h \in H) \) and consider the following system (1) of equations

\[
x + r_h y_h = q_h(v\mu) \quad (h \in H)
\]

with unknowns \(x, (y_h)_{h \in H} \). If (1)' is the system obtained from (1) by restricting \(h \) to a finite subset \(\{h_1, h_2, ..., h_n\} \) of \(H \), and if \(w_{ij} \) (\(1 \leq i, j \leq n, i \neq j \)) are elements of \(R \) with \((h_i - h_j)w_{ij} = 1 \) (recall that when \(i \neq j \), \(h_i - h_j \notin J \) and so \(h_i - h_j \) is a unit of \(R \)), then \(x = \sum_{j=1}^{n} q_{hi}(v\mu), y_{hi} = \sum_{j=1, j \neq i}^{n} w_{ij}q_{hi}(\mu) \) (\(1 \leq i \leq n \)) is easily seen to be a solution of (1)' in \(S \). Since \(S \) is pure-injective, the system (1) is solvable by \(a, (b_h)_{h \in H} \) in \(S \), say. Now, \(a \) and \((b_h)_{h \in H} \) have finite support, and so there exist \(h_0 \in H \) and \(c, d \in R \) such that \(v = r_{h_0}c + dr_{h_0} \). Next, as \(R \) is left (resp. right) duo, we obtain that \(v \in R_h \), and, since \(R \) is local, this means \(v \in RuR \) or \(u \in RuR \).

For the 'if' part, observe first that the direct product of left duo rings is again
left duo, and so R may be assumed to be a local left serial ring. Since R is perfect, it follows easily that it is left artinian, and has therefore a unique composition series of left ideals $R \supseteq J \supseteq J^2 \supseteq \ldots \supseteq J^k = 0$, for some k. It is clear then that R is left duo. A symmetric argument shows that a right serial perfect ring is right duo.

The theorem immediately yields

Corollary 1. For any ring R, the following statements are equivalent.

(i) R is an artinian serial ring.

(ii) R is a left pure semisimple duo ring.

(iii) R is duo and has finite representation type.

Remark. Combining [9, Theorem 3] and [4, Corollary 5.3], we obtain that a left pure-semisimple duo ring R with $J^2 = 0$ has finite representation type. Corollary 1 shows that the condition $J^2 = 0$ is not necessary.

Corollary 2. Let R be a local left pure semisimple one-sided duo ring. Then either R is serial or $J^2 = 0$.

Proof. Use Theorem and [5, Theorem 2.2].

Acknowledgment. The author wishes to acknowledge the support provided by King Fahd University of Petroleum and Minerals.
References

6. D. Simson, Indecomposable modules over one-sided serial local rings and right pure semisimple PI-rings, Tsukuba J. Math. 7 (1983), 87-103.