King Fahd University of Petroleum & Minerals

DEPARTMENT OF MATHEMATICAL SCIENCES

Technical Report Series

TR 193

December 1995

Semi-open and Regularly Closed Set in Separable and
Locally Separable Metric Spaces

Raja Mohammad Latif, Stephen Willard

DHAHRAN 31261 e SAUDI ARABIA e www.kfupm.edu.sa/math/ @ E-mail: mathdept@kfupm.edu.sa




SEMI-OPEN AND REGULARLY CLOSED
SETS IN SEPARABLE AND LOCALLY
SEPARABLE METRIC SPACES

RAJA MOHAMMAD LATIF
Department of Mathematical Sciences
King Fahd University of Petroleum & Minerals
Dhahran 31261, Saudi Arabia

STEPHEN WILLARD
Department of Mathematics
University of Alberta
Edmonton, T6G 2G1 Canada

ABSTRACT

In this paper we extend the results of [LATIF & WILLARD; 1995] to separable and locally separable
metric spaces. This paper deals with the finite and countable intersections of semi-open sets and regularly
closed sets in separable metric spaces. We prove that a set in a separable metric space is the intersection of
two semi-open sets if and only if it is the union of an open set and a nowhere dense set. We also show that
a set in a separable metric space is the intersection of finitely many regularly closed sets if and only if it is
the union of a regularly closed set and a closed nowhere dense set. We also prove that a countable
intersection of semi-open sets is a closed set minus a set of the first category. It is also shown that a setin
a locally separable metric space is the intersection of two semi-open sets if and only if it is the union of
an open set and a nowhere dense set.
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INTRODUCTION

In 1963, N. Levine introduced the concept of semi-open set by defining a subset A of a
topological space X to be semi-open if there exists an open set U in X such that A
contains U and A is contained in the closure of U in X. He proved thataset A ina
topological space X is semi-open if and only if A is contained in the closure of the
interior of A in X. SO(X) will denote the class of all semi-open sets in a topological
space X. We note that every open set in a topological space X is a semi-open set but a
semi-open set may not be an open set in X. N. Levine also proved that the union of a
collection of semi-open sets in a topological space is always semi-open. However the
intersection of even two semi-open sets may not be a semi-open set. It is clear that a
nowhere dense set in a space X is always not semi-open in X and the complement of a
nowhere dense setin X is always semi-open in X. In particular for any semi-open set S
in a space X, the difference of the closure of S and § is not semi-open in X.

MAIN RESULTS

A. SEMI-OPEN SETS AND REGULARLY CLOSED
SETS IN SEPARABLE METRIC SPACES

In this main section of this paper, we give a characterization of the intersection of semi-
open sets and regularly closed sets in separable metric spaces.

Our first result shows that a nowhere dense set in a separable metric space can be
represented in terms of two semi-open sets.

THEOREM.1.If X is a separable metric space and N is a nowhere dense subset of
X, then there exist two semi-open sets S; and S3 in X suchthat N=§ 1M 87,

PROOF: It is well-known by Urysohn's Metrization Theorem that a separable metrizable
space X can be embedded as a subspace of the Hilbert cube 10, So there exists
:X — %0 an embedding. Let K=CIXo[R(X)]. Then K is a compact metric space,
 W(X) isdensein K and p:X = K is an embedding. Now to verify that p(N) is
nowhere dense in K, let V be a nonempty open subset of K. Then p-1(V) being a
nonempty open subset of K, wecan fix x € p~1(V) N (X~ Clx (N)) as N is nowhere
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dense in X. Then W(x) € V and x € Clx (N). Butas p: X = uX) is a
homeomorphism, so x € CIx(N) implies that p(x) € Clyx)[(N)]. This shows that
W(N) is nowhere dense in p(X). Then it follows easily that u(N) is nowhere dense in

K as u(X) isdense in K. Hence by Theorem 4 of [LATIF & WILLARD; 1995], there
exist disjoint open sets G; and Gz in K such that

Clk[uN)] < CIk(G;j) - G;j, for i=1, 2.
Let Hi=GiNuX), fori=1,2.
Then Hj is openin u(X) foreach i =1, 2, and H; and Hy are disjoint. Also
W(N) < Clg(Hj) —Hj, for i=1,2. Forif y € u(N), then every K-neighborhood of y
meets G; whence every u(X)-neighborhood of y meets H;, for i =1, 2. Now set
Ti=H; Y p(N), for i=1, 2. Thenclearly T; and T, are semi-open in pu(X) and
W) =Ty NTy,
Now let S1=p-1(Ty) and S =pu-1(Ty). Thenas p: X = u(X) is a homeomorphism,
so it follows immediately that S; and S2 are semi-openin X and N=8; M Ss.

COROLLARY.2. If X is a separable metric spaceand A=G Y N where G is open
and N is nowhere dense, then A =81M S where S; and Sz are semi-open.

PROOQF: By Theorem 1, we can writt N=T; NTy where T; and T, are semi-open.
Then GUN=GVY(T1"Ty)

=(GVYT)YN(GVTy.
Clearly S1=GVYT; and S2=G VT, are semi-openand A =S; M S3.

Now we will show that a closed set in a separable metric space X can be represented in
terms of regularly closed sets in X. To see this we need the following lemmas.

LEMMA.3.If X isdenseinaspace K and A isopenin K, then
X N CIk(A) = CIx(X N A).

PROOF: Since X NClk (A) isclosedin X and contains X N A, so Clx(X N A)C
X M CIg (A). On the other hand, suppose x € X N Clg (A). Then x € X and every
K-neighborhood of x meets A. Let U be an open neighborhood of x in X. Then
U=VNX, where V isopenin K. Now V isa K-neighborhood of x and hence
meets A, whence VO A is a nonempty open setin K, so (VN A)NX =P, and
therefore (VN X) NA# ¢ whence UNXNA)= P, Thus x € Clx(X N A).



The next lemma describes the regularly closed property possessed by the intersection of a
regularly closed set and a dense subspace of a space.

LEMMA.4. Let X be dense in a space K. If R is regularly closedin K, then R N X
is regularly closed in X.

PROOF: We have R = Clg[Intg(R)]. But then using lemma 3, we have
X MR =X N Clx[Intk(R)]
= Clx [X M (Intg (R))].
Hence X MR is the closure of an open setin X, whence X MR is regularly closed.

LEMMA.S. Every closed set A in a space X is the union of a regularly closed set and a
nowhere dense closed set.

PROOF: It is enough to note that
A =[Clx (Int (A))] V[A —1Int (A)].

Now let us state and prove our central result.

THEOREM.6. Every closed set in a separable metric space is the intersection of two
regularly closed sets.

PROOF: Let X be a separable metric space and let A be a closed subset of X. Embed
X as a dense subset of a compact metric space K. Then A=XN Clk(A). By Lemma 5,
Clg(A)=R YN where R is aregularly closed set and N is a closed nowhere dense set

in K. Then by Lemma 7 of [LATIF & WILLARD; 1995], N = F1 NFy where F; and
Fy are regularly closed in K. Thus

Clk(A)=R Y (F1 N Fy)
=RVF)NRVEF)
=T1NT,
where Ti=RVUF; and T2=RVF;. Also clearly T; and T2 are regularly closed in
K. Hence A=X"(T1NTy)
=X NT) VX NTy)
=E; NEj.
ByLemmad4, Ey=XNT; and Ep =X NTy are regularly closed in X.



Now our next result is that in a separable metric space X, the difference of a closed set

and a set of the first category can be characterized in terms of a countable intersection of
semi-open sets in X.

For this purpose, we will make use of the following lemma.

LEMMA.7.If R isregularly closed and T is nowhere dense in a space X, then R~ T
is semi-open.

PROOF: Let G=Int(R - T). Then GS (R -T). Weclaimthat (R -T) &
Cl[Int(R — T)] = CI(G). To justify our claim,let x € (R-T) andlet V be an open set
containing x. It is sufficient to show that V N Int(R - T) # ¢. Now R = Cl{Int(R)] and
x € R, so V meets Int(R). Hence, since T is nowhere dense, V meets
[Int(R) — CI(T)]. But [Int(R) — CIT)] is open and is contained in (R — T), so
[Int(R) — CI(T)] < Int(R - T). Hence V meets Int(R —T) as required.

Now let us state and prove the result we have been aiming for.

THEOREM.8. Let X be a separable metric space. Let A=F - T where F is closed

and T is of first category. Then A= h‘;:’.-.1511 where each S, is semi-open.

PROOF: By Theorem 6, we can write
F=R;1 MRy
where R1 and Ry are regularly closed. Since T is of first category, we can write

T= ﬂ:;lTn where each T, is nowhere dense. Then
A=F-T

=R; N Ry) - (Up; Tw)
= [(R; A Ry) ~ Ty

= e [R1 = To) N Ry - Tw)].
ByLemma7, forall n€ N, Ry~ Ty and Ry—Ty are semi-open.

The following proposition shows that for each given infinite cardinal number <, there
exists a compact Tz-space Y containing a dense discrete subspace X of cardinality T
such that each non-isolated pointin Y is not the intersection of two semi-open sets in Y.



PROPOSITION.9. Let X be an infinite discrete space. Let BX be the Stone-Cech
compactification of X. Let P€ BX~X. Then {p) is nowhere dense but {p} is not
the intersection of two semi-open sets in BX,

PROOF: We note that {p} isclosed in BX and p is non-isolated because BX is
compact Tz and X isdensein PX. Thus {p} is nowhere densein BX,

In order to prove that {p} is not the intersection of two semi-open sets, it is enough to
show that for each pair of disjoint open sets, say G and H in BX,
Clgx (G) N Clax (H)=¢. Forthislet U=sGNX and V=HNX. Then since X is

densein BX, so we have Clﬂx U= CIBX (G) and Clpx V)= Clﬁx (H).
But then U and V are disjoint zero-sets in X, so Clgx U)n Clgx (V) =4.
Hence Clgx (G) N Clgx (H)=¢ as required.

In Particular the preceding proposition shows that a non-isolated point in a separable
compact Tz-space may not be an intersection of two semi-open sets.

Now we will show that a non-isolated point in a T4-space with a discrete subspace may
not be an intersection of countably many semi-open sets.

Let X be a Tychonoff space. Then the set {t € PX : X is c-embedded in X V {t}}

denoted by vX (Pronounced: upsilon X ) is called the real compactification of X. We
call X realcompact if vX=X,

We call a cardinal m measureable if a set X of cardinal m admits a {0,1}-valued
measure [ suchthat p(X)=1, and p({x})=0 forevery x € X.

THEOREM.10. A discrete space is realcompact if and only if its cardinal is
nonmeasureable.

PROOF: 12.2 of [GILLMAN & JERISON; 1960].

PROPOSITION.11. Let X be a discrete space with its cardinal nonmeasureable. By

Theorem 10, fix p € vX-X. Then {p} is not an intersection of countably many semi-
open sets in vX.
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PROOF: Contrawise if possible, then suppose that there exists a sequence {Sp: n € N}

of semi-open sets such that {p} = Ma=1Sn- Then there exists a sequence {Gp :n € N}
of open sets such that Gn S SnC Clyx (Gn), for each n € N. This implies that

(=1Cn & Npe1Sn = {PIS Miey Clyx (G- Since p being a pointin vX -X, isnota
G;s in vX. Thus f\n—lGn ¢.
Now foreach n€N, put Hy =G, M X. Since X isdensein vX and each G, is open
in vX. Soit follows that
Clyx(Hy) = Clyx(Gy), foreach n€ N.

Then since each H, is a zero-set in X and Mpag Ha=9, so it implies that

Anet Clyx(Hn) = 0. Hence Mneg Clvx (Gn) =0. But then {p} = ¢, which is
impossible. Hence we conclude that {p} is not the intersection of countably many semi-
open sets in vX.

Our next aim is to give the characterization of a separable closed and nowhere dense
subspace of a metrizable space in terms of semi-open sets. To achieve our aim, we will
need the following well-known results. Their proofs may be seen in some standard book
on General Topology. Firstly let us recall totally bounded spaces. A subset D of a metric
space X with the metric P will be called an €-net in X if for every point x € X there
exists an x* € D suchthat P(x, x*) < £ A metric space (X, P) is said to be totally
bounded if for each € > 0 there exists a finite £-net {x1,x2,..., xx} in X. A
metrizable space X will be called metrizable in a totally bounded manner provided that
there exists a metric P on X such that (X, P) is totally bounded.

THEOREM.12. In order that a metrizable space X be metrizable in a totally bounded
manner it is necessary and sufficient that X be separable.

THEOREM.13. If X is any metrizable space, A is a closed subsetof X, and P is a
compatible metric on A, then P can be extended to a compatible metricon X.

THEOREM.14. Every metric space X can be isometrically embedded as a dense subset
of a complete space.

THEOREM.15. A set A is nowhere dense in the space X if and only if every
nonempty open set contains a nonempty open set which is disjoint from A.



We also need the following Lemma.

LEMMA.16. Let (X*, P*) be a complete metric space. Let A © X* such that A is
totally bounded in X*. Then Clys (A)=A is compact.

PROOF:Let £>0. Since A is totally bounded. There exists a finite subset D of A
such that foreach a € A, there exists da € D such that P (8, dg) < ¢/2. Let x € A,
Then ANOg2 (X) # 9. Fix any 2x€ ANOgy (x). Then ax e A and x € Ogs (x).
ie., ax € A and P*(ax, X) < &/2. But also for a, e A, we have
da, € D such that p*(ay da, ) <€/2. Thus p*(x, da, ) S P*(x, ax ) + p*(ax, da, ) <E.
Hence foreach x € A, there exists dx =da, € D such that p* (x, dy )<€ and D isa
finite subsetof A. Hence A is totally bounded in X*,

Now also A being a closed subspace of a complete space X*, A is complete. Thus A
being complete and totally bounded, A is compact.

Now we are ready to prove our main theorem.

THEOREM.17. Let X be a metrizable space. Let A be a separable, closed and
nowhere dense subset of X. Then there exist two semi-open sets R; and Ry in X such
that A=R; N Ry,

PROOF: By using Theorem 12, let P bea compatible metric on A such that (A, P ) is
totally bounded.

Then by applying Theorem 13, we can extend P toa compatible metric on X.

Now by making use of Theorem 14, there exists a compatible metric space (X*, P*) and
F:X —X* suchthat f isan isometry of X onto f(X) and f(X) is densein X*.
Now to see that f(A) is totally bounded in X*, let £>0. Since A is totally bounded,
there exists a finite subset D of A such that for each a e A, there exists d3 € D such
that P(a,da) <&. Soforany a € A, f(dy) € fD) and P’(f(a), f(da)) = P(a, dg ) <
€. Also f(D) is a finite subset of f(A). Thus f(A) is totally bounded in X*,

Put Z =Clx+ [f(A)]. Then by Lemma 16, Z is compact.

Now to show that f(A) is nowhere dense in F(X), let G be a nonempty open subset of
F(X). Thenclearly f-1(G) isa nonempty open subset of X.

Since A is nowhere densein X. So by Theorem 15, f(A) is nowhere dense in FX.



Now to verify that f(A) is nowhere dense in X*, let G* be a nonempty open subset of
X*. Thenas f(X) is densein X*. G** = G* N f(X) is a nonempty open subset of
F(X). Hence by Theorem 15, there exists a nonempty open subset H** of f(X) such
that H** C G** and H** N f(A) = O.
Let H* be a nonempty open subset of X* such that
H** = H* N £(X) and H* N f(A) = $.
Then K* = H* N G* is a nonempty open subset of X* such that
K*<S G* and K*N f(A)=O.
Hence by Theorem 15, f(A) is nowhere dense in X*,
Thus Z is a closed compact nowhere dense subset of X*.
So Z=81 M S, where Sjand S are semi-open sets in X*,
Let U; and Uz be open setsin X* such that
UiSSi < Clx* (Up, fori=1,2.

Put Wi=fX) NU;, Ti=fX)N §;, for i=1,2,
Then since f(X) is densein X*, so Clx» (Wj) = Clx* (Up, for i=1,2.
This implies that Clycxy (W) =Clyx) (Ui), for i=1,2,
Now Ui N f(X) & §i N f(X) < [Clx+ (Ui)] N f(X) = Clgx) (Ui), for i=1,2.
Thus we have W; & T; < Clyxy (Wj), for i=1,2.
Hence Ty and Ty are semi-open in f(X).
Also Clycx) [f(A)] = £(X) N Cl x+ [f(A)]

=fX)NZ

=fX)N(S1787)

=[fX) N S11 N [fX) N S2]

=T1NTy.
Since f(A) isclosedin f(X). So f(A)=T;NTs.
Let Ry = f~1(T1), Rz = f~-1(To).
Since f:X — f(X) is a homeomorphism, we have A = R; MRy and also it follows
easily that Ry and R are semi-open in X.

THEOREM. 18. Let (X, P) be ametric space. Let A be a closed separable subset of
X. Then there exist Ty, T, € SO(X) such that A=T; N Ts.

PROOF: Note that A = Int (A) Y (A - Int (A)). Clearly (A - Int (A)) is a separable,
closed and nowhere dense subset of X. So by Theorem 17, there exist Sy, S; e SOX)
such that '



A-Int(A)=S1"N8S».
Hence A =(Int(A)) Y (S1 N Sy)
=(Int (A) Y S1) N (Int (A) Y S).
Let Ti=Int (A)VS;, for i=1, 2. Then A= Ty NTa. Also T; and T, are semi-
open sets each being a union of an open set and a semi-open set.

DEFINITION.19. A set A in a topological space X is said to be semi-closed if and
only if there exists a closed set F such that Int FHSACF.

THEOREM.20. A set A inaspace X is semi-closed if and onlyif Int (A )< A,

PROOF: This follows easily.
Now we give a characterization of a semi-closed set in a separable metric space.

THEOREM.21. Let (X, P) be a separable metric space. Let A be a semi-closed subset
of X. Then there exist two semi-open sets S and Sy such that A=8§;N S,

PROOF: By Theorem 20, Int (A) € A.

Hence A=(Int(A))Y (A-Int(A)).

Take B=A —(Int (A)).

Thenclearly Int(B) < Int(A).

Since BN (Int(A))=9. So BN (Int(B)) = b.

This implies that B N (Int (B )) = ¢,

Hence Int (B )=¢

Thus B is nowhere dense in X.

Now by Theorem 1, there exist Ty, T € SO(X) such that
« B=A-Int(A)=T; N Ty

Itfollowsthat A=(Int(A)) VY (T NTy)

=(Int(A)YUT) N nt(A)YTy).

Let Sj=Int(A)VYT;, for i=1,2.

Then S; and Sj are semi-open.

Also A=§1 NS,

- Pyiel™
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B. SEMI-OPEN SETS IN LOCALLY
SEPARABLE METRIC SPACES

In this section, we extend some results of the previous section to locally separable metric
spaces.

THEOREM.22. For a metric space to be locally separable it is necessary and sufficient
that it be a disjoint union of open separable subsets.

PROOF: Theorem of [SIERPINSKI; 1933].

THEOREM.23. Let (X, P ) be a locally separable metric space. Let A be a nowhere
dense subset of X. Then there exist S, T e SO(X) suchthat A=SNT.

PROOF: If X is separable, then we already know that A=S N'T for some S, T
SO(X). If X is non-separable, then by Theorem 22, there exists {Xg:B e I} a pairwise
disjoint class of separable open sets such that X = V8e1 Xs .
Foreach Be I, let Ag= A N Xg. Theneach Ag is nowhere dense in Xp.
So by Theorem 1, there exist Sg, Tg € SO(Xp) such that Ag=SgN T,
Then for B e I, there exist open sets Gg and Hg in Xg such that
Gp < Sg < Clxg (Gp) and Hg ¢ T < Clx, (Hp).
Clearly Gp and Hg are openin X, forall Be I
We claim that Clxz(Gg) < Clx(Gg), foreach Bel
For thatlet x € Clxy(Gg). Let U be any open subset of X such that xeU.
Then xeUnXg and U N Xp is openin Xp.
So (UnXg)NGg#¢. This implies that U N Gg # ¢.
Hence xeClx(Gp). Thus Clxy(Gp) < Clx(Gg). Similarly, Clx,(Hg) < Clx(Hg).
We conclude that Sg and Tg are semi-openin X, forall 8 e I.
Put S=uperSg, T=ge1T3.
Thenclearly S and T are semi-open in X. Further, SN Ty=®, foral B, d e I
such that B+ d. Hence ST =S NTg=Ag, foreach Be I.
Thus “BeI(S8NT)=UgerAg. So (UgerSg)NT=uper(ANXg).
Therefore SNT=AN(Uge1Xg)=ANX=A,
ie, A=SnT.

11
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COROLLARY.24. Let (X, P) be a locally compact metric space. Let A be a nowhere
dense subset of X. Then there exist S, T e SO(X) suchthat A=SNT.

PROOF: Note that every locally compact metric space is locally separable. The desired
result now follows from Theorem 23.

Our next Theorem characterizes the union of an open set and a nowhere dense set in terms
of two semi-open sets in a locally separable metric space.

THEOREM.25. Let (X, P) be a locally separable metric space. Let A € X. Then A
is the intersection of finitely many semi-open sets in X if and only if A is the union of an
open set and a nowhere dense setin X.

PROOF: =>: Follows from Theorem 1 of [LATIF & WILLARD; 1995].

: Let A=GYUN where G isanopensetin X and N is a nowhere dense set in X.
By Theorem 23, there exist two semi-open sets S; and S in X such that
N=S8; NS,
Thus A=GU(S1NSy)
=(GVS) NG VSy).
Let §=GVUS;, T=GUVS,.
Then S and T are semi-open in X.
Also A=SNT,

COROLLARY.26. Let (X, P) be alocally compact metric space. Let A & X. Then
A is the intersection of finitely many semi-open sets in X if and only if A is the union of
an open set and a nowhere dense setin X.

PROOF: We note that every locally compact metric space is locally separable. Now the
result follows immediately from Theorem 25.

~ Y
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