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Abstract

The stability of a class of multi-dimensional damped structures using active time-
delayed displacement feedback control is discussed. The conditions under which the
system remains stable are derived. An analysis of the effectiveness of using displace-
ment control under these conditious is studied. Specific numerical results are given for a

structurally damped beam for various parameters when the time-delayed displacement
control is applied.

1 Introduction

Time delay optimal control problems have long been recognized as important models
for real-life phenomena. Various mathematical models associated with control of distributed
parameter systems with simple time delays appearing in the state equations or boundary
conditions have been studied in the literature cf.[11 - 15, 19 - 20].

In recent publications on structural control, it has been shown that time delays in a
control mechanism may cause instability in the system e.g. {7, 8]. This matter has been
experimentally investigated in [5]. The stability of systems described by delay-differential
and more general functional differential equations were investigated by several authors see
e.g. [3, 4, 6, 10, 9].

On the other, feedback stabilization of time-lag systems for distributed parameters is
minimally studied in the literature. The effect of the delays in boundary-feedback stabiliza-~
tion schemes for wave equations is studied in [7]. Time-delayed feedback control of beams
subject to displacement constraints is studied in [13]. The asymptotic stability for delays of
controlled and uncontrolled linear functional differential equations is established 8]. It was
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also indicated in this paper [8] that boundary feedback stabilization of hyperbolic partial
differential equations may not be robust with respect to small delays in the feedback.

Two examples, the one-dimensional wave equation and an Euler-Bernoulli beam equation,
demonstrate this phenomenon. In reference [1] showed the time delay effect on distributed
parameter structures that are controlled using direct velocity feedback. It is shown how
the stability of the structure could be lost due to time delay. Active velocity feedback
control of fexible damped structures is also studied [16] where there is a time delay in
applying the control. A sufficient condition, independent of the time delay, for the system
to remain asymptotically stable is formulated. When this condition is violated, it is shown
constructively that for any control constant there is a time delay for which the structure is
unstable. However the effect of time delay on the stability of distributed parameter systems,
in which active displacement control is used, has been adequately investigated in [17].

In the present paper, we study the stability and control of damped distributed parameter
systems with time delayed feedback which are governed by partial differential equation.
In particular, this study is concerned with the effect of time delayed displacement feedback
control in minimizing a performance indexfor a class of self-adjoint damped flexible systems.
The linear distributed parameter system with delayed control action is transformed into
a modal time-delayed lumped parameter system using modal space technique [17]. The
linear lumped parameter system is transformed into a system without delays. Under this
transformation, the system is a set of ordinary differential control equations. We demonstrate
that problems of stabilization and controllability can be dealt by addressing the reduced
system. Numerical investigation of a simply supported beam with structural damping is
carried out.

2 The Dynamic Model

Consider the motion of a structure whose deviation from rest at the point x = (1, T2, ...,%4) €
Q c R¢,Q a bounded domain, and at time t is given by w(z,t). Moreover, assume that the
motion of the structure is governed by the non-dimensional partial differential equation:

Llw(z,t)] = wy + 2M[w,] + L{w] = u(z,t - 7y z€Q,t>0 (2.1)
subject to homogeneous boundary conditions of the form:
Blw]lsa = [0]mx1 (2.2)
and prescribed initial conditions of the form:
w(z,0) = a(z), we(z,0) = B(z) (2.3)

with a(z) € Lo() and B(z) € Lo(S) where Ly(€2) denotes the Hilbert space of all real
valued square-integrable functions on Q.

M and L are time-invariant scalar linear partial differential operators of order m and 2m
respectively, B is a time-invariant vector linear partial differential operator of order m, and
the highest order derivatives in B are less than the highest derivative in L. It is assumed
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that B can vary from one subregion of the boundary 0 to another so long as there are at
most a finite number of subregions and the boundaries of the subregions are smooth enough.

Assume that {M, B} and {L, B} are self-adjoint and there is a complete set of orthogonal
eigenfunctions {¢n()}n>1 of M and L such that

M[(pn] = UpPny, O< g < pp<puz<... (24.)
L[(pn] = Xn‘Pn) D<A <A<A<... (25)

and _
Blgnllon =0 (2.6)

where p, and ), are the eigenvalues of the operators M and L respectively.

3 Time-Delayed COntrol Problem

We wish to apply displacement-feedback control to the distributed-parameter system
described in (2.1)-(2.3). The control is assumed to act on the structure with a time delay
7 > 0. The differential equation governing the vibrations of controlled structure is given by

Llw(z, )] =u(zt-7), (2,1 €x(0t) (3.1)
where u(z,t) is assumed to be of the form
u(z,t) = A,T(z,t) (3.2)

where
a(z,t) = —c [w(z,t) + Fra(z, s)) (3.3)

which represents the closed-loop control and ¢ > 0 is the gain control parameter. The
transformations A, and F, are linear operators that depend on 7, which are to be given
later. Note that there exists a unique solution to (2.1)-(2.3) with (3.1)-(3.3) for each ¢ > 0,
with the assumption of u(z,t) =0for -7 <t <0and 0 <z <1.

The effectiveness of the control may be measured by introducing the following perfor-
mance criterion

E(c;tf),:‘—% /Q {wi(@,ts) + w(z, )L [w (z,t)]} dO2 | (3.4)

for some finite time ¢ ;. Equation (3.4) indeed provides a measure of some appropriate physical
quantity such as the total energy.

Then the problem is to find an optimal gain control c* > 0 such that
E(c";ty) = min E(c;ts)) (3.5)

with w(z, t) subject to (2.1)-(2.3) and (3.1)-(3.3), and such that w(z,t) — 0 asymptotically.



4 Stability

We wish to study the stability of the feedback control system given by (2.1)-(2.3) and
(3.1)-(3.3). The constant c is the feedback gain of the controller. Let us define the Fourier
series expansion:

o0

W) = D walt) gule) (4.1)
u(z,t) = iu,,(t) onl2) (42)

Using equations (3.2)-(3.3), and introducing equations (4.1)-(4.2) into the system (3.2), then
applying the integral transormation [o(.) ¢i(z) dz, and using the orthogonality property, the
modal displacement w(t) and control input u,(t) satisfies

W (t) + 2y Wi (t) + \aWa(t) = up(t — 7), forn>1. (4.3)

The modal system (4.3) is completely controllable for finite values of n, and completely
stabilizable for n > 1. For the modal equation (4.3) with delay in the control, let v,(t) be
defined as in [2]

t

Va(t) = e " Tw,(t) + t e T fu(t — 7 — 8)up(s)ds, forn > 1. (4.4)
with ot ant in (A,)
ePrt — g sin
w(t) = —————— =g #nt T
fnt) = —— . A

in which
A A, = V An — U2

where p, and g, are the roots of the characteristic equation associated with the homogenious
of the modal equation (4.3). The last equality is satisfied if A, — u2 > 0, which means the
system is underdamped. The motivation for control is more attractive for the case when
the system is under or critically damped. From now on, we assume that A\, — u2 > 0. The
transformation (4.4) of v,(t) is valid for any arbitrary control u,(t — 7).

The transformation (4.4) reduces the system (4.3) to:

V() + 20nVr(2) + Ava(t) = &7 fu(—7)Un(t) + e gn(-T)un(t), forn>1. (4.5)

where
Gn€Prt — pretnt

Prn—Qqn

ga(t) = = g Hnt [cos (Ant) — En gin (Ant)] , forn > 1.

An

Remark: The newly resulting transformed system (4.5) is delay free, where are existing
known techniques to stabilize such a system. As it will be seen later, the asymptotic stability
of (4.5) implies the asymptotic stability of the system (4.3) which in turns guarantees the
stability of the feedback control system given by equations (2.1)-(2.3) and (3.1)-(3.3).
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The modal system equation (4.5) can be written as:

Galt) + nValt) + Anvalt) = 20T g (1
n [—AMn sin (An7) + cos (TA,,)] u,(t), forn>1. (4.6)

Since the modal equation (4.3) is completely controllable for finite n and completely stabil-
isable for n > 1, the new modal equation (4.6) is completely controllable for finite n and
completely stabilisable for n > 1 [2].

Using the modal state v,, as a feedback variable, then

u,(t) = —cvyu(t) : (4.7)
is the feedback control law of the modal equation (4.5). The resulting closed-loop equation

becomes: (A
Va(t) + [z#n - cﬂlg—’”)] Valt)

+ [An + 2% sin (A7) + coos (An’r)} Va(t) =0, forn>1. (4.8)

Using the Hurwitz stability criterian, the closed-loop modal equation (4.8) is stable iff there
exists a constant gain c such that:

22U, — c-Sin—(AA"—T) >0
and " forn > 1.
Antc [_Aﬂ" sin (1A,) + cos (TA,,)] >0
or
c sin (A,7) < 2u,A,
a,tIl,ld for n > 1. (4.9)
[ A" sin (A,7) — cos (An'r)} c<An

The two conditions on the feedback gain c given by inequalties (4.9), are necessary and
sufficient for stability of the closed-loop modal equation (4.8). This means that the feedback
control (4.7) stabilizes the modal system (4.6).

The next step is to find out whether there exists a feedback gain c so that the conditions
of (4.9) are satisfied for every n > 1. The next theorem establishes the main result.

Theorem: If for n > 1, u, > 0, then for some values of ¢ > 0, the feedback control law

un(®) = —c [T (0) + [ ° 7 fols)un(s = 7 5)ds] (4.10)

asymptotically stabilizes the modal system (4.3), for t > 27.



Proof: First, let us turn our attention to the modal system equation (4.8). From (4.9), the
modal system (4.8) is asymptotically stable if the feedback gain c satisfies the inequality:

2[1",,A-n )\n
0 < ¢ <min - ;
n>1 | |sin (AnT)] £z sin (A,7) — cos (A,ﬂ')‘

For n > 1, u, > 0 and A, > 0, then ¢ > 0 always exists.
Now using the transformation equation (4.4) together with the feedback control (4.10),
one obtains

sin (A,

[wa(t)] < €7 |va(t) + e max |le™ ——— )Il lva(@®)ll  forn >1. (4.11)

‘where ||v(t)|| =, max  [va(s)|-

Suppose that a. feedback gain ¢ for which all the roots of the characteristic equation
associated with the closed-loop modal system (4.8) have negative real parts, is the feed-
back control gain to (4.8). Thus the system (4.8) is asymptotically stable (i.e. v,(t) — 0
asymptotically).

When n is finite, p, is also finite, then v7(t) — 0 asymptotically as ¢ — oo (because
va(t) — O asymptotically as ¢ — co). Thus, from (4.11) wa(t) — 0 asymptotically as
t — o0.

If y, — oo when n — 0o, the modal system equation (4.8) reduces to

Vn(t) + 20, Va(t) + Anva(t) =0 (4.12)

with T, — pn and A,— M,. One has v,(t) — 0 asymptotically. In fact the modal state
variable v, converges at the rate of e™#* (i.e. |va(t)] < Ke™#* for some positive real
number K). Hence equation (4.11) becomes:

—pins SID (Aps)
An

|wa(t)] < Ke 0= [1 +cT _max |l

—7'8

] forn> 1. (4.13)

So, for t > 27, w,(t) — 0 asymptotically. This complete the proof of the theorem.
The next step is to derive the control law to the system (2 1)-(2.3). Ifa(z,t) = T2, Ua(t) ¢nl(2),
using equations (4.1) and (4.2) one obtains

Wz, t) = 3 e T (t) 0nl2), (4.14)

n=1

with

u(z,t) = —c [ w(z,t) + Z <pn(m)/ e M fu(s) Tt — 7~ s)ds] (4.15)

It is to be noted that the asymptotic stability of the feedback controlled modal system (4.3)
and (4.10) implies the asymptotic stability of the system (2.1)-(2.3) and (4.14)-(4. 15). So
any c that satisfies the inequalities (4 9) asymptotlcally stabilizes the system (2.1)-(2.3) and
(4.14)-(4.15).



mode 1 | mode 2 | mode 3 | mode 4 | mode 5
v =0.001, 7=0.1 02335 | — |30.5837| — —_—
v =0.001, 7=0.5 —— | 4.0125 | 37.779 —_— _—
v=0.001,7=1.0 " [ 3.1861 | 20.7904 | 67.3422 | 122.7182
v =0.0002, 7 = 0.1 0.0467 | —— | 6.1168 _— —_
v=0.0002, 7=05| —— 0.8025 | 7.5556 —_ —_—
4+=0.0002, 7=10| —— 0.6372 | 4.1579 | 13.4675 | 24.5440

Table 1: Upper bound of the feedback gain ¢ for which stability is guaranteed.

For this control mechanism to be practical, only ‘finite’ modal displacement terms are
to be used for feedback control. The minimum number N* of modes to be kept is based
on the stability criteria. If p, > 0, then with the observation from (4.14) and (4.15) that
e~PT — 0 and e #7 f,(s) — 0 as n — oo, one can conclude that there exist an integer
N* sufficiently large such that the control law given in (4.14) and (4.15) still stabilizes the
system (2.1)-(2.3), when the summation in the control law (4.14) and (4.15) are performed
onl<n<N,with N> N*~

5 Numerical example

As an example, the results of the paper are applied to a simply supported beam of length !
with structural damping in which the controlled equation is given by

wa(z, 1) + 2Mwy(z,t) + Lw(z,t) = u(z,t - )

with o o

M = —-'75—3-3—2 and L= Y
where v is the structural damping coefficient. The eigenvalues problem (2.4)-(2.5) admits a
closed-form solutions: A, = (n7)%, pn = Y(n7)?, and @n(z) = sin(nwz), for n > 1.

The region of stability of the control mechanism as obtained in the Theorem is illus-
trated in Table 1 for modes 1 to 5, for different values of v and7. The notation '—
indicates that there is no upper bound. It is observed from the table that there exists a feed-
back controller gain ¢ > 0 which stabilizes the system. Moreover the gain ¢, that stabilizes
the first or second mode, stabilizes all other remaining higher modes.

In this part of the study it is assumed that v = 0.001,and 7
conditions are taken as:

and the initial conditions are of the form a(z) = z(z — 1) and B(z) = 0.
As a measure of the total force spent in the control process we consider the integral

1 ptg !
F=c/0 / w¥(z, t)dt da.
7

0.5. The boundary

w(0,t) wez(0,t)
w(l,t) we(1,t)

00
00

Bluwllon [
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Figure 1: The measure of the total force spent, F, plotted against ¢ for modes 1, 2, 3, and
the dominant modes, with v = 0.001 and 7 = 0.5.

In Figure 1 the total force F is plotted against the feedback gain c. The total feedback
force increases as c increases. It is observed that the feedback force for each mode increases
as c increases. In Figure 2, the total energy E of the system is plotted against the feedback
gain ¢, where t; = 5. It is observed that the energy function E(c) of the system is convex
whose minimum occurs at ¢* = 10.8.

The real part ¢ of the characteristic equation is plotted against ¢ in Figure 3. The
first modal] displacement w; plotted against time, for ¥ = 0.001 and 7 = 0.5.The first
modal displacement w, plotted against time, for v = 0.001 and 7 = 0.5. It is observed that
the eigenvalues associated with the mode 2 and 3 gets close to the imaginary axis when ¢
increases, while the eigenvalues associated with the mode 1, 4, and 5 go away of the imaginary
axis when c increases. This result is confirmed by row 2 of the Table 1.

In Figure 4, the first modal displacement of the damped beam for mode 1 is plotted as

a function of time. The simulation shows that the controller drives the modal state w (t) to
the origin in relatively short time.

6 Conclusion

Linear systems with delayed control action are transformed into equivalent systems without

delays. It is shown that the feedback gain control exists and asymptotically stabilizes the
closed-loop modal system.

The effectiveness of the control mechanism under the stability conditions is studied nu-
merically. Specific numerical results plotted in Figure 4 are obtained for a structurally
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Figure 2: The total energy E plotted agamst ¢ for modes 1, 3, 5, and the dominant modes,
with v = 0.001 and 7 = 0.5.
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Figure 3: Re(¢) plotted versus c for modes 1, 2,

-5, with = 0.001, 7 = 0.5.
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Figure 4: The first modal displacement w, plotted against time, for v = 0.001 and 7 = 0.5.

damped beam-to illustrate the phenomenon of control effectiveness.
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