Co-Semisimple Modules and Generalized Injectivity

Javed Ahsan
CO-SEMISIMPLE MODULES AND GENERALIZED INJECTIVITY

Javed Ahsan
Department of Mathematical Sciences
King Fahd University of Petroleum and Minerals
Dhahran 31261, Saudi Arabia

1. Introduction.

Let R be a ring with identity and M a left R-module. A left R-module U is called M-injective if, for every submodule N of M and homomorphism $\phi : N \to U$, ϕ can be lifted to a homomorphism $\psi : M \to U$. A left R-module M is called co-semisimple by Fuller [2] (and is called V-module by Ramamurthi [11] and Tominaga [12]) provided every submodule of M is an intersection of maximal submodules. Fuller [2, Proposition 3.1] and Hirano [4, Proposition 3.1] or Dung, Huynh, Smith and Wisbauer [1] proved that M is co-semisimple if and only if every simple left module is M-injective. Wisbauer [14] proved that M is co-semisimple if and only if every finitely cogenerated left module in $\sigma[M]$ is M-injective. In this paper, we characterize co-semisimple left R-modules via generalized injectivity of some modules.

Let \mathcal{F} be a left Gabriel topology on R and M a left R-module. We call M \mathcal{F}-co-semisimple if every \mathcal{F}-cocritical left R-module C in $\sigma[M]$ is dense in its M-injective hull $I(C)$. Let \mathcal{X} be a specified class of left R-modules (for example, the class of all quasi-continuous left R-modules in $\sigma[M]$, or, the class of all quasi-injective left R-modules in $\sigma[M]$, etc.). We show that if the left Gabriel topology \mathcal{F} is such that all left R-modules in \mathcal{X} are \mathcal{F}-injective, then M is \mathcal{F}-co-semisimple if and only if every \mathcal{F}-torsionfree \mathcal{F}-finitely cogenerated left R-module N in $\sigma[M]$ is dense in its some essential extensions which are in \mathcal{X}.

As a corollary we show that a left R-module M is a co-semisimple module if and
only if every finitely cogenerated left R-module in $\sigma[M]$ is continuous if and only if every finitely cogenerated left R-module in $\sigma[M]$ is quasi-continuous if and only if every finitely cogenerated left R-module in $\sigma[M]$ is direct-injective.

Page and Yousif [10] proved that for a finitely generated left R-module M, M is a noetherian co-semisimple module if and only if every semisimple left R-module is M-injective. In this paper we also show that a left R-module M is a locally noetherian co-semisimple module if and only if every semisimple left R-module (in $\sigma[M]$) is M-injective if and only if every semisimple left R-module (in $\sigma[M]$) is the direct sum of a finitely cogenerated module and an M-injective module if and only if every essential extension in $\sigma[M]$ of every semisimple left R-module in $\sigma[M]$ is an \mathcal{X}-module, where \mathcal{X} is a specified class of left R-modules.

2. Preliminaries.

Let M be a left R-module. We say that a left R-module N is subgenerated by M, or that M is a subgenerator for N, if N is isomorphic to a submodule of an M-generated module. Following [14], we denote by $\sigma[M]$ the full subcategory of R-Mod whose objects are all R-modules subgenerated by M. By [14, 17.9], every module N in $\sigma[M]$ has an injective hull $I(N)$ in $\sigma[M]$, which is also called an M-injective hull of N. It is known that the M-injective hulls of a left R-module in $\sigma[M]$ are unique up to isomorphism. In the following, we always denote by $I(N)$ the M-injective hull of N for any left R-module $N \in \sigma[M]$.

Let \mathcal{X} be a class of left R-modules, that is a collection of left R-modules such that if $M \in \mathcal{X}$ then any left R-module isomorphic to M belongs to \mathcal{X}. Any member of \mathcal{X} is called an \mathcal{X}-module.

Definition 2.1. Let M be a left R-module and \mathcal{X} a class of left R-modules in $\sigma[M]$. We call \mathcal{X} an I-class in the category $\sigma[M]$ if it contains all M-injective left R-modules.
in $\sigma[M]$ and for any $N \in \sigma[M]$, if there exists an M-injective left R-module L in $\sigma[M]$ such that $N \leq L$ and $N \oplus L$ is in \mathcal{X}, then N is L-injective.

If $M = R$, then any I-class in the category $\sigma[M]$ is called an I-class of left R-modules.

Following [19], we call \mathcal{X} an injectivity class in the category $\sigma[M]$ if it is closed under direct summands, contains all quasi-injective left R-modules in $\sigma[M]$ and $N \oplus I(N) \in \mathcal{X}$ implies that N is M-injective. We claim that every injectivity class in the category $\sigma[M]$ is an I-class. In fact, if \mathcal{X} is an injectivity class, then \mathcal{X} contains all M-injective left R-modules in the category $\sigma[M]$. Suppose that N is in $\sigma[M]$ and L an M-injective left R-module in $\sigma[M]$ such that $N \leq L$ and $N \oplus L \in \mathcal{X}$. Then L is an injective object of the category $\sigma[M]$. Thus there exists a homomorphism $g:I(N) \to L$ such that $g|_N = \tau$, the natural inclusion map $N \to L$. Now it follows that $g:I(N) \to L$ is a monomorphism since N is essential in $I(N)$. Thus we have $L = I(N) \oplus P$ for a left R-module P. Therefore $N \oplus L = N \oplus I(N) \oplus P \in \mathcal{X}$. Since \mathcal{X} is closed under direct summands, we obtain that $N \oplus I(N) \in \mathcal{X}$. Now it follows that N is M-injective.

A left R-module N is called a CS-module if every submodule of M is essential in a summand of M. N is called continuous if it is a CS-module and every submodule isomorphic to a summand of M is itself a summand. N is called quasi-continuous if it is a CS-module and if N_1 and N_2 are summands of N with $N_1 \cap N_2 = 0$, then $N_1 \oplus N_2$ is a summand of N. A left R-module N is an SQC-module [18] if and only if for any submodule L of N such that there exists a non-zero complement submodule C of N which is isomorphic to a factor module of L, any R-homomorphism from L into N may be extended to an endomorphism of N. N is E-injective [16] if and only if for any non-zero complement submodule C of N and relative complement K of C, any essential submodule E of N containing $K \oplus C$, any R-monomorphism $g:E \to N$ and R-homomorphism $f:E \to N$, there exists an endomorphism h of R_N such that $hg = f$. N is a NCI-module [17] if and only if for any submodule P containing a
non-zero complement submodule of N and any submodule L of N which is isomorphic to P, every R-homomorphism from L into P extends to an endomorphism of N. N is called direct-injective if, for every direct summand L of N, every monomorphism $L \to N$ splits.

The following proposition gives some examples of I-classes.

Proposition 2.2. The class of all quasi-injective (respectively, continuous, quasi-continuous, direct-injective, NCI, SQC, E-injective) left R-modules in $\sigma[M]$ is an I-class.

Proof. It follows from [5], [9], [15], [17], [18] and [19].

Let \mathcal{F} be a left Gabriel topology on R. The quotient category $(R, \mathcal{F})\text{-Mod}$, associated with \mathcal{F}, is the full subcategory of $R\text{-Mod}$ whose objects are the \mathcal{F}-closed (i.e., \mathcal{F}-torsionfree and \mathcal{F}-injective) left R-modules, and it is a Grothendieck category. The inclusion functor $i : (R, \mathcal{F})\text{-Mod} \to R\text{-Mod}$ has a left adjoint $a : R\text{-Mod} \to (R, \mathcal{F})\text{-Mod}$ which is exact and assigns to each $M \in R\text{-Mod}$ its module of quotients $M_\mathcal{F}$.

3. \mathcal{F}-Co-semisimple Modules.

Definition 3.1. Let \mathcal{F} be a left Gabriel topology on R, M a left R-module and N in $\sigma[M]$.

(1) We say that N is \mathcal{F}-cocyclic in $\sigma[M]$ if there exists a \mathcal{F}-cocritical left R-module $C \in \sigma[M]$ such that

$$0 \to N_\mathcal{F} \to I(C)_\mathcal{F}$$

is exact. N is called $\sigma - \mathcal{F}$-cocyclic in $\sigma[M]$ if it is a finite direct sum of \mathcal{F}-cocyclic left R-modules in $\sigma[M]$.

(2) N is called \mathcal{F}-finitely cogenerated in $\sigma[M]$ if there exist \mathcal{F}-cocritical left R-
modules C_1, \ldots, C_n in $\sigma[M]$ such that the sequence

$$0 \to N_{\mathcal{F}} \to \bigoplus_{i=1}^n I(C_i)_{\mathcal{F}}$$

is exact.

If $M = R$ and $\mathcal{F} = \{R\}$, then \mathcal{F}-cocyclic modules in $\sigma[M]$ (resp. \mathcal{F}-finitely cogenerated modules in $\sigma[M]$) are precisely cocyclic (resp. finitely cogenerated) modules in the usual sense (see [14] and [7]).

Definition 3.2. Let M be a left R-module and \mathcal{F} a left Gabriel topology on R. We call M a \mathcal{F}-co-semisimple module if every \mathcal{F}-cocritical left R-module C in $\sigma[M]$ is dense in its M-injective hull $I(C)$.

Note that if $\mathcal{F} = \{R\}$, then the \mathcal{F}-co-semisimple left R-modules are precisely the co-semisimple left R-modules. On the other hand, if \mathcal{F} is a perfect Gabriel topology, then the inclusion functor $j : (R, \mathcal{F})\text{-Mod} \to R_{\mathcal{F}}\text{-Mod}$ is an equivalence; hence, for every left R-module M, M is \mathcal{F}-co-semisimple if and only if $M_{\mathcal{F}}$ is co-semisimple. If \mathcal{F} is a left Gabriel topology on R such that for every left R-module N in $\sigma[M]$, $N_{\mathcal{F}}$ is an injective object of $(R, \mathcal{F})\text{-Mod}$, then M is a \mathcal{F}-co-semisimple module. In particular, if \mathcal{F} is a left Gabriel topology on R such that $(R, \mathcal{F})\text{-Mod}$ is a spectral category (that is, every object is injective), then clearly every left R-module M is \mathcal{F}-co-semisimple. Thus, if \mathcal{G} denotes the left Goldie topology, then every left R-module M is \mathcal{G}-co-semisimple.

Theorem 3.3. Let M be a left R-module and \mathcal{F} a left Gabriel topology on R. If \mathcal{X} is an I-class in the category $\sigma[M]$ such that every \mathcal{X}-module is \mathcal{F}-injective, then the following conditions are equivalent.

1. M is \mathcal{F}-co-semisimple.
2. Every \mathcal{F}-torsionfree and \mathcal{F}-finitely cogenerated left R-module in $\sigma[M]$ is dense in its some essential extensions which are \mathcal{X}-modules.
(3) Every \mathcal{F}-torsionfree and $\sigma - \mathcal{F}$-cocyclic left R-module in $\sigma[M]$ is dense in its
some essential extensions which are \mathcal{X}-modules.

(4) For every \mathcal{F}-torsionfree and \mathcal{F}-finitely cogenerated left R-module N in $\sigma[M],
there exists an \mathcal{X}-module L with essential submodule N such that $\operatorname{Rad}_{\mathcal{F}}(L) = 0$.

(5) For every \mathcal{F}-torsionfree and $\sigma - F$-cocyclic left R-module N in $\sigma[M]$, there exists
an \mathcal{X}-module L with essential submodule N such that $\operatorname{Rad}_{\mathcal{F}}(L) = 0$.

PROOF. (1) \Rightarrow (2). Let left R-module $N \in \sigma[M]$ be \mathcal{F}-torsionfree and \mathcal{F}-finitely
cogenerated in $\sigma[M]$. Then there exist \mathcal{F}-cocritical left R-modules $C_1, \ldots, C_m \in \sigma[M]
such that

$$0 \to N_{\mathcal{F}} \xrightarrow{g} \bigoplus_{i=1}^{m} I(C_i)_{\mathcal{F}}.$$

Consider the following diagram

$$
\begin{array}{ccc}
N_{\mathcal{F}} & \xrightarrow{r} & I(N)_{\mathcal{F}} \\
\downarrow{g} & & \\
\bigoplus_{i=1}^{m} I(C_i)_{\mathcal{F}} & &
\end{array}
$$

It is clear that $\bigoplus_{i=1}^{m} I(C_i) \in \sigma[M]$ is M-injective. Thus $\bigoplus_{i=1}^{m} I(C_i)$ is an \mathcal{X}-module since
\mathcal{X} is an I-class in the category of $\sigma[M]$, and so is \mathcal{F}-injective by assumption. It is
easy to see that $\bigoplus_{i=1}^{m} I(C_i)$ is \mathcal{F}-torsionfree. Thus $\bigoplus_{i=1}^{m} I(C_i)$ is \mathcal{F}-closed. This implies
that $i \left(\bigoplus_{i=1}^{m} I(C_i) \right)_{\mathcal{F}} \simeq \bigoplus_{i=1}^{m} I(C_i)$. Thus $i \left(\bigoplus_{i=1}^{m} I(C_i) \right)_{\mathcal{F}}$ is M-injective. A similar
argument gives that $i(I(N)_{\mathcal{F}}) \simeq I(N) \in \sigma[M]$. Thus $i(N_{\mathcal{F}}) \in \sigma[M]$. Now, by [14, 16.3],
there exists a homomorphism $f : i(I(N)_{\mathcal{F}}) \to i \left(\bigoplus_{i=1}^{m} I(C_i) \right)_{\mathcal{F}}$ such that $i(g) = f i(\tau)$.
Thus we have $g = a(f) \tau$. Since N is essential in $I(N)$ and N is \mathcal{F}-torsionfree, by
[3, Lemma 0.1], it follows that $N_{\mathcal{F}}$ is an essential subobject of $I(N)_{\mathcal{F}}$. Thus $a(f) : I(N)_{\mathcal{F}} \to \bigoplus_{i=1}^{m} I(C_i)_{\mathcal{F}}$ is a monomorphism. Since M is \mathcal{F}-co-semisimple, we have $(C_i)_{\mathcal{F}} = I(C_i)_{\mathcal{F}}$, $i = 1, \ldots, m$. Thus $I(N)_{\mathcal{F}}$ is isomorphic to a subobject of semisimple object
⊕(C_i)_{\mathcal{F}} of (R, \mathcal{F})-\text{Mod}. Hence I(N)_{\mathcal{F}} is semisimple. This implies that \(N_{\mathcal{F}} = I(N)_{\mathcal{F}} \).

Clearly \(I(N) \) is an \(\mathcal{X} \)-module since it is \(M \)-injective.

(2) \(\Rightarrow \) (3). Let \(N \) be a \(\mathcal{F} \)-torsionfree and \(\sigma - \mathcal{F} \)-cyclic left \(R \)-module in \(\sigma[M] \).

Then \(N = \bigoplus_{i=1}^n N_i \), where \(N_1, \ldots, N_n \) are \(\mathcal{F} \)-cyclic left \(R \)-modules in \(\sigma[M] \). Thus there exist \(\mathcal{F} \)-cyclic left \(R \)-modules \(C_1, \ldots, C_n \in \sigma[M] \) such that the sequence

\[
0 \to N_{\mathcal{F}} \to \bigoplus_{i=1}^n I(C_i)_{\mathcal{F}}
\]

is exact. Thus \(N \) is \(\mathcal{F} \)-finitely cogenerated in \(\sigma[M] \).

(3) \(\Rightarrow \) (1). Let \(N \) be a \(\mathcal{F} \)-cyclic left \(R \)-module in \(\sigma[M] \). Then \(N \) is \(\mathcal{F} \)-torsionfree and \(N_{\mathcal{F}} \) is a simple object of \((R, \mathcal{F})-\text{Mod} \). Since \(I(N) \) is \(M \)-injective, it is easy to see that \(I(N) \) is \(\mathcal{F} \)-closed. Thus \(i(I(N)_{\mathcal{F}}) \cong I(N) \in \sigma[M] \); and hence \(i(N_{\mathcal{F}}) \), a submodule of \(i(I(N)_{\mathcal{F}}) \), is in \(\sigma[M] \). Since the sequence

\[
0 \to i(N_{\mathcal{F}})_{\mathcal{F}} \to i(I(N)_{\mathcal{F}})_{\mathcal{F}}
\]

is exact, and \((i(I(N)_{\mathcal{F}}))_{\mathcal{F}} \cong I(N)_{\mathcal{F}} \), we see that \(i(N_{\mathcal{F}}) \) is \(\mathcal{F} \)-cyclic in \(\sigma[M] \). It is easy to see that \(i(I(N)_{\mathcal{F}}) \in \sigma[M] \) is \(\mathcal{F} \)-cyclic, too. Thus \(i(N_{\mathcal{F}}) \oplus i(I(N)_{\mathcal{F}}) \) is \(\sigma - \mathcal{F} \)-cyclic. Clearly \(i(N_{\mathcal{F}}) \oplus i(I(N)_{\mathcal{F}}) \) is \(\mathcal{F} \)-torsionfree. Thus, by condition (3), there exists an \(\mathcal{X} \)-module \(L \) such that \(i(N_{\mathcal{F}}) \oplus i(I(N)_{\mathcal{F}}) \) is an essential submodule of \(L \) and \((i(N_{\mathcal{F}}) \oplus i(I(N)_{\mathcal{F}}))_{\mathcal{F}} = L_{\mathcal{F}} \). Thus we get

\[
L_{\mathcal{F}} \cong N_{\mathcal{F}} \oplus I(N)_{\mathcal{F}}.
\]

Clearly \(L \) is \(\mathcal{F} \)-closed since it is \(\mathcal{F} \)-torsionfree and \(\mathcal{F} \)-injective. Thus

\[
i(N_{\mathcal{F}}) \oplus i(I(N)_{\mathcal{F}}) \cong i(L_{\mathcal{F}}) \cong L.
\]

This implies that \(i(N_{\mathcal{F}}) \oplus i(I(N)_{\mathcal{F}}) \) is an \(\mathcal{X} \)-module. By definition of \(I \)-classes it follows that \(i(N_{\mathcal{F}}) \) is \(i(I(N)_{\mathcal{F}}) \)-injective. Thus there exists a homomorphism \(f : i(I(N)_{\mathcal{F}}) \to i(N_{\mathcal{F}}) \) such that \(f\vert_{i(N_{\mathcal{F}})} = 1 \). This implies that there exists a left \(R \)-module \(H \) such
that \(i(I(N)) = i(N) \oplus H \). Thus \(I(N) = N \oplus a(H) \). But \(N \) is essential in \(I(N) \) since \(N \) is essential in \(I(N) \). Thus \(N = I(N) \) and we are done.

(2) \(\Rightarrow \) (4). Let a left \(R \)-module \(N \in \sigma[M] \) be \(\mathcal{F} \)-torsionfree and \(\mathcal{F} \)-finitely cogenerated in \(\sigma[M] \). By (2), there exists an essential extension \(L \) of \(N \) such that \(L \) is an \(\mathcal{X} \)-module and \(N \) is dense in \(L \). By [3, Proposition 1.2], we have

\[
(\text{Rad}_\mathcal{F}(L))_\mathcal{F} = \text{Rad}(L) = \text{Rad}(N).
\]

Since \(N \) is \(\mathcal{F} \)-finitely cogenerated in \(\sigma[M] \), there exist \(\mathcal{F} \)-cocritical left \(R \)-modules \(C_1, \ldots, C_n \) in \(\sigma[M] \) such that the following sequence is exact:

\[
0 \to N \to \bigoplus_{i=1}^n I(C_i) = 0.
\]

By the results proved above, \(M \) is \(\mathcal{F} \)-co-semisimple when condition (2) holds. Therefore every \(\mathcal{F} \)-cocritical left \(R \)-module in \(\sigma[M] \) is dense in its \(M \)-injective hull. It follows that \(I(C_i) = (C_i)_\mathcal{F}, \ i = 1, \ldots, n \). Thus we have

\[
\text{Rad} \left(\bigoplus_{i=1}^n I(C_i) \right) = \bigoplus_{i=1}^n \text{Rad}(I(C_i)) = 0,
\]

which implies that \(\text{Rad}(N) = 0 \). Thus \(\text{Rad}_\mathcal{F}(L) = t(\text{Rad}_\mathcal{F}(L)) \), where \(t \) is a left exact radical corresponding to the Gabriel topology \(\mathcal{F} \). This means that \(\text{Rad}_\mathcal{F}(L) \) is a \(\mathcal{F} \)-torsion module. On the other hand, \(\text{Rad}_\mathcal{F}(L) \) is a \(\mathcal{F} \)-saturated submodule of \(L \), and so is \(\mathcal{F} \)-torsionfree. Therefore we get \(\text{Rad}_\mathcal{F}(L) = 0 \), as required.

(4) \(\Rightarrow \) (5). It is similar to the implication (2) \(\Rightarrow \) (3).

(5) \(\Rightarrow \) (3). Let \(N \) be a \(\mathcal{F} \)-torsionfree and \(\sigma - \mathcal{F} \)-cocyclic left \(R \)-module in \(\sigma[M] \). Then there exists an essential extension \(L \) of \(N \) such that \(L \) is an \(\mathcal{X} \)-module and \(\text{Rad}_\mathcal{F}(L) = 0 \). It is enough to show that \(N \) is dense in \(L \). By [3, Proposition 1.3], it follows that \(L \) is cogenerated by a class of \(\mathcal{F} \)-cocritical left \(R \)-modules. Since \(N \) is \(\sigma - \mathcal{F} \)-cocyclic in \(\sigma[M] \), as the implication (2) \(\Rightarrow \) (3), we see \(N \) is \(\mathcal{F} \)-finitely cogenerated in \(\sigma[M] \). Thus there exist \(\mathcal{F} \)-cocritical left \(R \)-modules \(C_1, \ldots, C_n \) such that the sequence

\[
0 \to N \to \bigoplus_{i=1}^n I(C_i)
\]
is exact. By analogy with the implication (1) ⇒ (2), we obtain that \(I(N)_\mathcal{F} \) is isomorphic to a subobject of \(\bigoplus_{i=1}^{n} I(C_i)_\mathcal{F} \). By [14, 17.10], it follows that \(I(N) \cong I(L) \) since \(N \) is essential in \(L \). Thus \(I(N)_\mathcal{F} \cong I(L)_\mathcal{F} \), which implies that \(L_{\mathcal{F}} \) can be embedded in \(\bigoplus_{i=1}^{n} I(C_i)_\mathcal{F} \). This means that \(L \) is \(\mathcal{F} \)-finitely cogenerated in \(\sigma[M] \). Thus clearly \(L \) is \(\mathcal{F} \)-finitely cogenerated in \(R\text{-mod} \). By [3, Proposition 1.7], every family of \(\mathcal{F} \)-torsionfree modules which cogenerated \(L \), does cogenereate it finitely. Thus there exist finite \(\mathcal{F} \)-cocritical left \(R \)-modules \(D_1, \ldots, D_k \) such that the sequence \(0 \to L \to \bigoplus_{i=1}^{k} D_i \) is exact, which implies that the sequence \(0 \to L_{\mathcal{F}} \to \bigoplus_{i=1}^{k} (D_i)_{\mathcal{F}} \) is exact. This means that \(L_{\mathcal{F}} \) is a semisimple object of \((R, \mathcal{F})\text{-Mod} \). On the other hand, \(N \) is an essential submodule of \(L \); and so \(N_{\mathcal{F}} \) is essential in \(L_{\mathcal{F}} \) by [3, Lemma 0.1]. It is then easy to see that \(N_{\mathcal{F}} = L_{\mathcal{F}} \), in other words \(N \) is dense in \(L \); and we are done.

The following corollary generalizes a corresponding result of [7].

Corollary 3.4. Let \(\mathcal{F} \) be a left Gabriel topology on \(R \). If \(\mathcal{X} \) is an \(I \)-class of left \(R \)-modules such that every \(\mathcal{X} \)-module is \(\mathcal{F} \)-injective, then the following conditions are equivalent.

1. \(R \) is a \(\mathcal{F} \)-\text{V-ring}.

2. Every \(\mathcal{F} \)-torsionfree and \(\mathcal{F} \)-finitely cogenerated left \(R \)-module is dense in its some essential extensions which are \(\mathcal{X} \)-modules.

3. Every \(\mathcal{F} \)-torsionfree and \(\sigma - \mathcal{F} \)-cocyclic left \(R \)-module is dense in its some essential extensions which are \(\mathcal{X} \)-modules.

4. For every \(\mathcal{F} \)-torsionfree and \(\mathcal{F} \)-finitely cogenerated left \(R \)-module \(M \), there exists an \(\mathcal{X} \)-module \(L \) with essential submodule \(M \) such that \(\text{Rad}_{\mathcal{F}}(L) = 0 \).

5. For every \(\mathcal{F} \)-torsionfree and \(\sigma - \mathcal{F} \)-cocyclic left \(R \)-module \(M \), there exists an \(\mathcal{X} \)-module \(L \) with an essential submodule \(M \) such that \(\text{Rad}_{\mathcal{F}}(L) = 0 \).
Corollary 3.5. Let M be a left R-module and X an I-class in the category $\sigma[M]$. Then the following assertions are equivalent.

(1) M is co-semisimple.

(2) Every finitely cogenerated left R-module in $\sigma[M]$ is an X-module.

(3) Every σ-cyclic left R-module in $\sigma[M]$ is an X-module.

For $M = R$, Corollary 3.5 gives characterizations of left V-rings by generalized injectivity.

Page and Yousif [10] proved that for a finitely generated left R-module M, M is a noetherian co-semisimple module if and only if every semisimple left R-module is M-injective. Recall that a left R-module M is locally noetherian if every finitely generated submodule of M is noetherian. We have

Proposition 3.6. Let M be a left R-module and X an I-class in the category $\sigma[M]$. Then the following conditions are equivalent.

(1) M is locally noetherian co-semisimple left R-module.

(2) Every semisimple left R-module (in $\sigma[M]$) is M-injective.

(3) Every semisimple left R-module (in $\sigma[M]$) is the direct sum of a finitely cogenerated left R-module and an M-injective module.

(4) For every semisimple left R-module N in $\sigma[M]$, every essential extension in $\sigma[M]$ of N is an X-module.

(5) For every semisimple left R-module N in $\sigma[M]$, every submodule of an essential extension in $\sigma[M]$ of N is an X-module.

If X is closed under direct summands, then the following are also equivalent.
(6) For every semisimple left R-module N in $\sigma[M]$, every essential extension in $\sigma[M]$ of N is the direct sum of a finitely cogenerated module and an \mathcal{X}-module.

(7) For every semisimple left R-module N in $\sigma[M]$, every submodule of an essential extension in $\sigma[M]$ of N is the direct sum of a finitely cogenerated module and an \mathcal{X}-module.

Proof. The equivalence of (1), (2) and (3) is proved in [8].

(4) \Rightarrow (2). Let N be a semisimple left R-module in $\sigma[M]$. Then $N \oplus I(N)$ is an essential extension of $N \oplus N$. Thus $N \oplus I(N)$ is an \mathcal{X}-module by condition (4), which implies that N is $I(N)$-injective by the definition of I-class. Now it is easy to see that $N = I(N)$ is M-injective.

(2) \Rightarrow (5). Let N be a semisimple left R-module in $\sigma[M]$ and L a submodule of an essential extension D in $\sigma[M]$ of N. Then N is M-injective by (2). Thus N is D-injective by [14, 16.3]. Now it is easy to see that $N = D$; and thus D is semisimple and M-injective. Therefore L, a direct summand of D, is M-injective. Since \mathcal{X} contains all M-injective left R-modules in $\sigma[M]$, it follows that every submodule of an essential extension in $\sigma[M]$ of a semisimple left R-module in $\sigma[M]$ is an \mathcal{X}-module.

The implications (5) \Rightarrow (4), (7) \Rightarrow (6) and (5) \Rightarrow (7) are clear.

(6) \Rightarrow (4). Not that the class of semisimple left R-modules is closed under direct sums; it is easy to see that every direct sum of essential extensions in $\sigma[M]$ of semisimple left R-modules in $\sigma[M]$ is an essential extension of a semisimple module. Now, by analogy with the proof of the main result of [6], we see that every essential extension in $\sigma[M]$ of a semisimple left R-module in $\sigma[M]$ is an \mathcal{X}-module.
REFERENCES

(ja1961)