Initial Value Problems for Integro-differential Inclusions

Abdelkader Boucherif
Initial Value Problems for Integro-differential Inclusions

Abdelkader Boucherif
Department of Mathematical Sciences
King Fahd University of Petroleum and Minerals
P.O. Box 5046, Dhahran 31261, Saudi Arabia
e-mail: aboucher@kfupm.edu.sa

Abstract. This paper is devoted to the study of the existence of solutions of initial value problems for scalar integro-differential inclusions. We shall rely on the topological transversality theorem to prove our main result.

Key Words: Initial value problem, integro-differential inclusions, a priori bounds on solutions, topological transversality theorem.

Mathematics Subject Classification: 34A37-34A60-34G20-45J05.

1. Introduction

In this paper, we are concerned with the study of the existence of solutions of initial value problems for integro-differential inclusions of the form

\[x'(t) \in F \left(t, x(t), \int_0^t K(t, s, x(s))ds \right) \quad t \in (0, T] \]

\[x(0) = 0. \] \hspace{1cm} (1)

Here \(F : J \times R^2 \to R \) is a set-valued map, and \(K : D \times R \to R \) is continuous, where \(D = \{(t, s) \in R^2; 0 \leq s \leq t < +\infty\}, J = [0, T]. \) Our objective is to provide sufficient conditions on the set-valued map \(F \) and the function \(K \) that insure the existence of solutions of (1). Our method of proof is based on topological transversality arguments. We note that such problems have application in the theory of closed-loop control problems. For, consider the scalar state equation \(\dot{x}(t) = f(t, x(t), u(t)) \) subject to the constraint \(u(t) \in U(t, x(t)), \) where \(U(t, x(t)) \) is a nonempty compact subset of \(R. \) Suppose the controls are generated by a closed-loop law in the form \(u(t) = (Kx)(t), \) where \(K \) is a nonlinear Volterra integral operator; i.e., \(u(t) = \int_0^t K(t, s, x(s))ds. \) Then

1
$U(t, x(t)) := \left\{ \int_0^t K(t, s, x(s))ds; \; x(t) \in R \right\}$.

Let $F \left(t, x(t), \int_0^t K(t, s, x(s))ds \right) = f(t, x(t), U(t, x(t)))$. Thus, we see that we have a problem of the form (1). Also, we should point out that when F is single-valued, problem (1) has been examined in [3] and [7].

2. Preliminaries

In this section we introduce notations, definitions and results that will be used in the remainder of the paper.

2.1 Function spaces (see [2]).

Let J be a compact interval in R. $C(J)$ is the Banach space of continuous real-valued functions defined on J, with the norm $\|x\|_0 = \sup\{|x(t)|; \; t \in J\}$ for $x \in C(J)$; $C^k(J)$ is the Banach space of k-times continuously differentiable functions. $L^p(J) = \left\{ x: J \to R \text{ measurable}; \; \int_J |x(t)|^p dt < +\infty \right\}$ and for $x \in L^p(J)$ define $\|x\|_{L^p} = \left(\int_J |x(t)|^p dt \right)^{1/p}$. The Sobolev spaces $W^{k,p}(J)$ are defined as follows

$$W^{1,p}(J) = \{ x: J \to R; x \text{ absolutely continuous and } x' \in L^p(J), \; 1 \leq p \leq \infty \}$$

and

$$W^{k,p}(J) = \{ x \in W^{k-1,p}(J); \; x' \in W^{k-1,p}(J) \} \quad k \geq 2.$$

Note that the embeddings $j : W^{k,p}(J) \to C^{k-1}(J)$ are completely continuous, J being compact.

2.2 Set-valued Maps

Let X and Y be Banach spaces. A set-valued map $G : X \to 2^Y$ is said to be compact if $G(X) = \overline{\{ G(x); x \in X \}}$ is compact. G has convex (closed, compact) values if $G(x)$ is convex (closed, compact) for every $x \in X$. G is bounded on bounded subsets of X if $G(B)$ is bounded in Y for every bounded subsets B of X. A set-valued map G is upper semicontinuous (usc for short) at $z_0 \in X$ if for every open set O containing Gz_0, there exists a neighborhood M of z_0 such that $G(M) \subset O$. G is usc on X if it is usc
at every point of X. If G is nonempty and compact-valued then G is usc if and only if G has a closed graph. The set of all bounded closed convex and nonempty subsets of X is denoted by $bcc(X)$. A set-valued map $G : J \rightarrow bcc(X)$ is measurable if for each $x \in X$, the function $t \mapsto \text{dist}(x, G(t))$ is measurable on J. If $X \subset Y$, G has a fixed point if there exists $x \in X$ such that $x \in Gx$. For more details on set-valued maps we refer to [4].

2.3 Topological Transversality Theory for Set-valued Maps (see [5]).

Let X be a Banach space, C a convex subset of X and U an open subset of C. $K_{BU}(\overline{U}, 2^C)$ shall denote the set of all set-valued maps $G : \overline{U} \rightarrow 2^C$ which are compact, usc with closed convex values and have no fixed points on ∂U (i.e., $u / \in \text{G}u$ for all $u \in \partial U$). A compact homotopy is a set-valued map $H : [0,1] \times \overline{U} \rightarrow 2^C$ which is compact, usc with closed convex values. If $u / \in H(\lambda, u)$ for every $\lambda \in [0,1], u \in \partial U$, H is said to be fixed point free on ∂U. Two set-valued maps $F, G \in K_{BU}(\overline{U}, 2^C)$ are called homotopic in $K_{BU}(\overline{U}, 2^C)$ if there exists a compact homotopy $H : [0,1] \times \overline{U} \rightarrow 2^C$ which is fixed point free on ∂U and such that $H(0, \cdot) = F$ and $H(1, \cdot) = G$. $G \in K_{BU}(\overline{U}, 2^C)$ is called essential if every $F \in K_{BU}(\overline{U}, 2^C)$ such that $G|_{\partial U} = F|_{\partial U}$, has a fixed point. Otherwise G is called inessential.

Theorem 1 (Topological transversality theorem). Let F, G be two homotopic set-valued maps in $K_{BU}(\overline{U}, 2^C)$. Then F is essential if and only if G is essential.

Theorem 2. Let $G : \overline{U} \rightarrow 2^C$ be the constant set-valued map $G(u) \equiv u_0$. Then, if $u_0 \in U$, G is essential.

Theorem 3 (Nonlinear Alternative). Let U be an open subset of a convex set C, with $0 \in U$. Let $H : [0,1] \times \overline{U} \rightarrow 2^C$ be a compact homotopy such that $H_0 \equiv 0$. Then, either

(i) $H(1, \cdot)$ has a fixed point in \overline{U}, or

(ii) there exists $u \in \partial U$ such that $u \in H(\lambda, u)$ for some $u \in (0,1)$.

3. Main Result
In this section, we state and prove our main result. We assume that

(H1) \(F : J \times R^2 \rightarrow bcc(R), (t, x, y) \mapsto F(t, x, y) \) is

(i) measurable in \(t \), for each \(x, y \in R \)

(ii) usc with respect to \((x, y) \in R^2 \) for a.e. \(t \in J \)

(H2) \(|F(t, x(t), v)| \leq f(t)|x(t)| + |v| + h(t) \) and \(|K(t, s, x(s))| \leq f(t)g(s)\psi(|x(s)|)\) where

\(f, g, h \) are continuous nonnegative real-valued functions on \(J \), and \(\psi : R_+ \rightarrow R_+ \)

is continuous nondecreasing such that \(\int_1^{+\infty} \frac{d\sigma}{\psi(\sigma)} = +\infty \).

Our main result reads as follows.

Theorem 4. If the assumptions (H1) and (H2) are satisfied, then the initial value problem (1) has at least one solution.

Remark. Condition (H2) has been used in [3] and [7] in the case of integro-differential equation.

Proof. This proof will be given in several steps, and uses some ideas from [5].

Step 1. Consider the set-valued operator \(\Phi : C(J) \rightarrow L^2(J) \) defined by

\[
(\Phi x)(t) = F\left(t, x(t), \int_0^t K(t, s, x(s))ds\right).
\]

\(\Phi \) is well defined, usc, with convex values and sends bounded subsets of \(C(J) \) into bounded subsets of \(L^2(J) \). In fact, we have

\[
\Phi x := \left\{ u : J \rightarrow R \text{ measurable; } u(t) \in F\left(t, x(t), \int_0^t K(t, s, x(s))ds\right) \text{ a.e. } t \in J \right\}.
\]

Let \(z \in C(J) \). If \(u \in \Phi z \) then

\[
|u(t)| \leq f(t)\left[|z(t)| + \int_0^t g(s)\psi(|z(s)|)ds\right] + h(t)
\]

\[
\leq \max_{t \in J} f(t)\left[\|z\|_0 + T\max_{s \in J} g(s)\max_{x \leq \|z\|_0} \psi(x)\right] + \|h\|_0.
\]
Hence \(\|u\|_{L^2} \leq C_0 \) for some constant \(C_0 \). This shows that \(\Phi \) is well defined. It is clear that \(\Phi \) is convex valued.

Now, let \(B \) be a bounded subset of \(C(J) \). Then, there exists \(k > 0 \) such that \(\|u\|_0 \leq k \) for \(u \in B \). So, for \(w \in \Phi u \) we have \(\|w\|_{L^2} \leq C_1 \), where \(C_1 = T \sup_{x \leq k} \theta(x) \),

\[
\theta(x) = \sup_{t \in J} \left\{ f(t) \left[x(t) + \int_0^t g(s)\psi(|x(s)|)ds \right] + h(t) \right\}.
\]

Also, we can argue as in [5, p. 16] to show that \(\Phi \) is usc.

Step 2. Let \(x \in H^1_0(J) \) be a possible solution of (1). Then there exists a positive constant \(M_0 \), not depending on \(x \), such that

\[
|x(t)| \leq M_0 \text{ for } t \in J.
\]

For, it follows from the differential inclusion that

\[
x(t)x'(t) \in x(t)F \left(t, x(t), \int_0^t K(t, s, x(s))ds \right).
\]

Assumption (H2) yields

\[
x(t)x'(t) \leq |x(t)x'(t)| \leq f(t)|x(t)| \left[|x(t)| + \int_0^t g(s)\psi(|x(s)|)ds \right] + h(t)|x(t)|
\]

which implies that

\[
x(t)^2 \leq 2 \int_0^t \left[f(s)|x(s)| \left(|x(s)| + \int_0^s g(\tau)\psi(|x(\tau)|)d\tau \right) \right] ds + 2 \int_0^t h(s)|x(s)|ds.
\]

Then (see [7, Theorem 3] or [3])

\[
x(t) \leq \int_0^t h(s)ds + \int_0^t f(s)E^{-1} \left[E \left(\int_0^s h(\tau)d\tau \right) + \int_0^s (f(\tau) + g(\tau))d\tau \right] ds
\]

where \(E(r) = \int_0^r \frac{d\sigma}{\sigma + \psi(\sigma)} \) and \(E^{-1} \) is the inverse of \(E \). This shows that \(|x(t)| \leq M_0 \)

for \(t \in J \) where

\[
M_0 = \|h\|_{L^1} + \sup_{t \in J} \left\{ \int_0^t f(s)E^{-1} \left[E \left(\int_0^s h(\tau)d\tau \right) + \int_0^s (f(\tau) + g(\tau))d\tau \right] ds \right\}.
\]
Step 3. For $0 \leq \lambda \leq 1$ consider the one-parameter family of problems

$$x'(t) \in \lambda F \left(t, x(t), \int_0^t K(t, s, x(s))ds \right) \quad t \in J, \; x(0) = 0. \quad (1)_\lambda$$

It follows from Step 2 that if x is a solution of $(1)_\lambda$ for some $\lambda \in [0, 1]$, then

$$|x(t)| \leq M_0 \text{ for } t \in J$$

and M_0 does not depend on λ.

Define $\Phi_\lambda : C(J) \to L^2(J)$ by

$$(\Phi_\lambda x)(t) = \lambda F \left(t, x(t), \int_0^t K(t, s, x(s))ds \right).$$

Step 1 shows that Φ_λ is usc, has convex values and sends bounded subsets of $C(J)$ into bounded subsets of $L^2(J)$. Let $j : H^1_0(J) \to C(J)$ be the completely continuous embedding. The operator $L : H^1_0(J) \to L^2(J)$, defined by $(Lx)(t) = x'(t)$ has a bounded inverse. We denote by L^{-1} this inverse. Let $B_{M_0+1} := \{x \in C(J); \|x\|_0 \leq M_0 + 1\}$.

Define a set-valued map $H : [0, 1] \times B_{M_0+1} \to C(J)$ by

$$H(\lambda, x) = (j \circ L^{-1} \circ \Phi_\lambda)(x).$$

We can easily show that the fixed points of $H(\lambda, \cdot)$ are solutions of $(1)_\lambda$. Moreover, H is a compact homotopy between $H(0, \cdot) \equiv 0$ and $H(1, \cdot)$. In fact, H is compact since Φ_λ is bounded on bounded subsets and j is completely continuous. Also, H is usc with closed convex values. Since solutions of $(1)_\lambda$ satisfy $\|x\|_0 \leq M_0 < M_0 + 1$ we see that $H(\lambda, \cdot)$ has no fixed points on ∂B_{M_0+1}.

Now, $H(0, \cdot)$ is essential by Theorem 2. Hence H_1 is essential. This implies that $j \circ L^{-1} \circ \Phi$ has a fixed point. Therefore problem (1) has a solution.

This completes the proof of the main result.

Remark. If we want to consider a nonzero initial condition, $x(0) = x_0$, then we let $y(t) = x(t) - x_0$, and hence y will be a solution of the following problem:

$$\begin{align*}
\left\{ \begin{array}{l}
y'(t) \in F \left(t, y(t) + x_0, \int_0^t K(t, s, y(s) + x_0)ds \right) \\
y(0) = 0.
\end{array} \right.
\end{align*}$$

6
Acknowledgment. The author is grateful to King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia for its constant support.

References

