A Filtration Problem through a Heterogeneous Porous Medium

S. Challal, A. Lyaghfouri
A Filtration Problem through a Heterogeneous Porous Medium

S. CHALLAL and A. LYAGHFouri

King Fahd University of Petroleum and Minerals
P.O. Box 728, Dhahran 31261, Saudi Arabia

Abstract. The flow of a fluid through a heterogeneous porous medium is studied, assuming it is governed by a nonlinear Darcy’s law and Dirichlet boundary conditions. Under a general condition on the permeability we prove that the free boundary is locally a continuous curve in some local coordinates. We also prove the uniqueness of the S_2-connected solution.

2000 Mathematics Subject Classification : 76S05, 35JXX
Key words : Heterogeneous Porous Medium, Nonlinear Darcy’s law, Free Boundary.

Introduction

In this paper we are concerned with the study of a heterogeneous dam problem. We recall that there exists a large literature on this subject where both homogeneous and heterogeneous dams were studied. In [Ly1] a two dimensional heterogeneous dam was studied with a permeability matrix $a(X) = (a_{ij}(X))$ satisfying

$$a_{12}(X) = 0 \quad \text{a.e. in } \Omega \quad \text{and} \quad \frac{\partial}{\partial y} a_{22}(X) \geq 0 \quad \text{in } \mathcal{D}'(\Omega),$$

(0.1)

where $X = (x, y)$ denotes points of \mathbb{R}^2. It was then proved that the free boundary separating the wet and dry regions of the dam is a continuous curve of the form

$$y = \Phi(x).$$

(0.2)

It was also proved that the S_2-connected solution is unique.

Note that similar results where established in [FH] and [SV] for a permeability matrix of the form $a(X) = k(X)I_2$ with $\frac{\partial}{\partial y} a_{22} \geq 0$ in $\mathcal{D}'(\Omega)$. In [CF] the authors studied a rectangular dam with a permeability matrix $a(X) = k(y)I_2$ such that $\frac{\partial}{\partial y} \leq 0$ in $\mathcal{D}'(\Omega)$. They proved that the free boundary is a curve of the form $x = \psi(y)$. This is what motivated us to consider this problem under the weaker assumption

$$\text{div}(a_{12}(X), a_{22}(X)) \geq 0 \quad \text{in } \mathcal{D}'(\Omega).$$

(0.3)

Actually we suppose the flow obeying to a general Darcy’s law that involves a nonlinear operator $A(X, \xi)$ which generalizes the classical linear law where $A(X, \xi) = a(X)\xi$. Then under the assumption $\text{div}(A(X,e)) \geq 0$ in $\mathcal{D}'(\Omega)$, where $e = (0,1)$, and some regularity conditions on A, we establish that the free boundary is locally a continuous graph of the form

$$\tau = \Phi(\omega).$$

(0.4)

where $(\tau, \omega) = S_0 T^{-1}(x, y)$, S and T are C^1-diffeomorphisms. Taking advantage of this result we prove the uniqueness of the S_2-connected solution.

We would like to point out that to our best knowledge the condition (0.3) appeared firstly in [A] and was used by the author to prove a similar inequality to (2.2). However the continuity of the free boundary and the uniqueness of solutions under this general condition are addressed here for the first time. Moreover in
all previous studies, authors considered exclusively dams that are enclosed between two curves: \(y = s_-(x) \) and \(y = s_+(x) \) which represent respectively the bottom and the top of the dam. This implicitly assumes that the dam is vertically convex. In this study we will free ourselves from this constraint and allow a wide variety of geometrical forms for our dam. For the existence of a solution we only require that \(\Omega \) is locally Lipschitz. However for the study of the free boundary we will assume that \(\Omega \) is locally of class \(C^1 \).

1. Formulation of the Problem

A porous medium that we denote by \(\Omega \) is supplied by several reservoirs of a fluid which infiltrates through \(\Omega \). We assume that \(\Omega \) is a bounded locally Lipschitz domain of \(\mathbb{R}^2 \) with boundary \(\partial \Omega = S_1 \cup S_2 \cup S_3 \), where \(S_1 \) is the impervious part, \(S_2 \) is the part in contact with air and \(S_3 = \bigcup_{i=1}^{\infty} S_{3,i} \) with \(S_{3,i} \) \((i = 1, \ldots, N)\) the part in contact with the bottom of the \(i \)th reservoir.

We assume that the flow in \(\Omega \) has reached a steady state and we look for the fluid pressure \(p \) and the saturated region \(S \) of the porous medium. The boundary \(\partial S \) of \(S \) is divided into four parts (see figure 1):

\(\Gamma_1 \subset S_1 \) : the impervious part,
\(\Gamma_2 \subset \Omega \) : the free boundary,
\(\Gamma_3 \subset S_3 \) : the part covered by fluid,
\(\Gamma_4 \subset S_2 \) : the part where the fluid flows outside \(\Omega \).

![Figure 1](image)

Figure 1

The flow is governed by the following nonlinear Darcy law

\[
v = -A(X, \nabla(p + y)) = -A(X, \nabla u)
\]

where \(v \) is the fluid velocity, \(u = p + y \) is the hydrostatic head and \(A : \Omega \times \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) is a mapping that
where \(v \) is the fluid velocity, \(u = p + y \) is the hydrostatic head and \(\mathcal{A} : \Omega \times \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) is a mapping that satisfies the following assumptions for some constants \(q > 1 \) and \(0 < c_0 \leq c_1 < \infty \):

\[
\begin{cases}
X \rightarrow \mathcal{A}(X, \xi) \text{ is measurable } \forall \xi \in \mathbb{R}^2, \\
\xi \rightarrow \mathcal{A}(X, \xi) \text{ is continuous for a.e } X \in \Omega, \\
\text{for all } \xi \in \mathbb{R}^2 \text{ and for a.e. } X \in \Omega, \quad \mathcal{A}(X, \xi) \geq c_0 |\xi|^q \quad \text{and} \quad |\mathcal{A}(X, \xi)| \leq c_1 |\xi|^{q-1}, \\
\text{for all } \xi, \zeta \in \mathbb{R}^2 \text{ and for a.e. } X \in \Omega, \quad \langle \mathcal{A}(X, \xi) - \mathcal{A}(X, \zeta), (\xi - \zeta) \rangle \geq 0.
\end{cases}
\] (1.2)

Moreover we have the following boundary conditions

\[
\begin{cases}
p = 0 \text{ on } S_2, \\
p = \varphi \text{ on } S_3, \\
v.\nu = 0 \text{ on } \Gamma_1, \\
p = 0 \quad \text{and} \quad v.\nu = 0 \text{ on } \Gamma_2 \quad \text{and} \quad v.\nu \geq 0 \text{ on } \Gamma_4
\end{cases}
\] (1.3)

where \(\varphi \) is a nonnegative Lipschitz continuous function which represents the fluid pressure at the bottoms of the reservoirs. For convenience we assume that \(S_3 \) is open relatively to \(\partial \Omega \).

Assuming the flow to be incompressible and taking into account (1.1)-(1.3), we are led (see [CaL]) to the following problem

\[
\begin{array}{c}
\text{Find } (u, g) \in W^{1,q}(\Omega) \times L^\infty(\Omega) \text{ such that }:
\\
(i) \quad u \geq y, \quad 0 \leq g \leq 1, \quad g(u - y) = 0 \text{ a.e. in } \Omega,
\\
(ii) \quad u = \varphi + y \quad \text{on } S_2 \cup S_3,
\\
(iii) \quad \int_\Omega (\mathcal{A}(X, \nabla u) - g\mathcal{A}(X, e)) \nabla \xi dX \leq 0
\\
\forall \xi \in W^{1,q}(\Omega), \quad \xi = 0 \text{ on } S_3, \quad \xi \geq 0 \text{ on } S_2.
\end{array}
\] (P)

For the existence of a solution of (P) under the assumptions (1.2), we refer the reader to [Ly3] where an existence result is given for generalized boundary conditions. The reader can also adapt the proof in [CaL] obtained for the case \(\mathcal{A}(X, \xi) = |\xi|^{q-2} \xi \). We also mention that the same problem with leaky boundary conditions is studied in [Ly4] under the assumption \(\mathcal{A}(X, e) = k(X)e \) with \(\frac{\partial k}{\partial y} \geq 0 \).

2. Properties of the Solution

Arguing as in [Ly1], [Chil] or [Ly4], we obtain

Proposition 2.1. Let \((u, g)\) be a solution of (P). Then we have

\[
\text{div} \left(\mathcal{A}(X, \nabla u) - g\mathcal{A}(X, e) \right) = 0 \quad \text{in } \mathcal{D}'(\Omega).
\] (2.1)

Moreover if \(\text{div} \left(\mathcal{A}(X, e) \right) \geq 0 \) in \(\mathcal{D}'(\Omega) \), we obtain

\[
\text{div} \left(\mathcal{A}(X, \nabla u) \right) = \text{div} \left(g\mathcal{A}(X, e) \right) \geq 0 \quad \text{in } \mathcal{D}'(\Omega).
\] (2.2)

From now on, we shall assume that

\[
\mathcal{A}(\cdot, e) = (\alpha^1(\cdot), \alpha^2(\cdot)) \in C^1(\Omega)
\] (2.3)

\[
\text{div} \left(\mathcal{A}(X, e) \right) \geq 0 \quad \text{in } \mathcal{D}'(\Omega)
\] (2.4)
There exists points $P_1, P_2, \ldots, P_K \in \partial \Omega$,
local coordinates $(x_k^i, x_k^j), (k = 1, \ldots, K)$ in the neighborhood of each P_k,
and C^1-diffeomorphisms $\psi_k : U_k = (-\alpha_k, \alpha_k) \times (-r, r) \rightarrow V_k = \psi_k(U_k)$

$$(x_k^i, x_k^j) \mapsto (x_k^i, x_k^j + \sigma_k(x_k^i))$$
such that if $U_k^+ = (-\alpha_k,\alpha_k) \times (0, r), \quad U_k^- = (-\alpha_k,\alpha_k) \times (-r, 0), \quad U_k^0 = (-\alpha_k,\alpha_k) \times \{0\}$,
then $\psi_k(U_k^+) \subset \Omega, \quad \psi_k(U_k^-) \subset \mathbb{R}^2 \setminus \Omega, \quad \Gamma_k = \psi_k(U_k^0) \subset \Gamma$ and

$$\bigcup_{k=1}^{k=K} \Gamma_k = \Gamma \quad \text{(2.5)}$$

$$\forall k = 1, \ldots, K \quad \sigma_k'(x_k^i)a^1(x_k^i, \sigma_k(x_k^i)) - a^2(x_k^i, \sigma_k(x_k^i)) \neq 0 \quad \forall x_k^i \in (-\alpha_k, \alpha_k). \quad \text{(2.6)}$$

Then we consider the following differential system

$$\begin{cases}
X'(t, \omega, h) &= A(X(t, \omega, h), e) \\
X(0, \omega, h) &= (\omega, h)
\end{cases} \quad (E(\omega, h))$$

where $h \in \pi_y(\Omega)$ and $\omega \in \pi_x(\Omega \cap \{y = h\}).$

By the classical theory of ordinary differential equations there exists a unique maximal solution $X(\cdot, \omega, h)$
of $E(\omega, h)$ which is defined on $[\alpha(\omega, h), \beta(\omega, h)]$ with $X(\alpha(\omega, h), \omega, h) \in \partial \Omega \cap \{y < h\}, X(\beta(\omega, h), \omega, h) \in \partial \Omega \cap \{y > h\}$ (see Figure 2). For simplicity we will denote in the sequel $X(t, \omega, h), \alpha(\omega, h)$ and $\beta(\omega, h)$
respectively by $X(t, \omega), \alpha(\omega)$ and $\beta(\omega)$. We note that (2.6) means that the orbits of $E(\omega, h)$ don't cross $\partial \Omega$
tangentially.

Figure 2

Moreover under the assumptions (2.3) and (2.6), one can prove
Proposition 2.2. \(\alpha, \beta \in C^1(\pi_x(\Omega \cap [y = h])) \).

Proof. Let \(h \in \pi_y(\Omega) \) and \(\omega \in \pi_x(\Omega \cap [y = h]) \). There exists \(k \in \{1, ..., K\} \) such that \(X(\alpha(\omega), \omega) \in \Gamma_k \). By continuity there exists \(\eta > 0 \) small enough such that \(X(\alpha(\omega), \omega) \in \Gamma_k \) for all \(\omega \in (\omega_0 - \eta, \omega_0 + \eta) \). Consequently we have \(\sigma_k(X_1(\alpha(\omega), \omega)) = X_2(\alpha(\omega), \omega) \) for all \(\omega \in (\omega_0 - \eta, \omega_0 + \eta) \). This means that \(\alpha(\omega) \) satisfies \(F(\alpha(\omega), \omega) = 0 \) for all \(\omega \in (\omega_0 - \eta, \omega_0 + \eta) \), where \(F \) is given by \(F = \sigma_k X_1 - X_2 \).

Taking into account (2.3) there exists an open set \(\Omega^* \) containing \(\Omega \) such that \(A(\cdot, \cdot) \in C^1(\Omega^*) \). Then for each \(\omega \in \pi_x(\Omega \cap [y = h]) \), there exists a unique maximal solution \(X^*(\cdot, \omega) \) of the differential system \(E(\omega, h) \) defined on \(\{ \alpha^*(\omega), \beta^*(\omega) \} \). Obviously we have \(X_1^*(\omega, \omega) = X \) when \(\omega \in \pi_x(\Omega \cap [y = h]) \).

Let \(F^* = \sigma_k \alpha X_1^* - X_2^* \) defined on \(D^* = \{ (t, \omega) / \omega \in (\omega_0 - \eta, \omega_0 + \eta), t \in (\alpha^*(\omega), \beta^*(\omega)) \} \). We have \(F^* \in C^1(D^*) \) since \(X_1^* \in C^1(D^*) \) and \(\sigma_k \in C^1(-\alpha_k, \alpha_k) \). In addition \(F^* \) is a \(C^1 \) extension of \(F \) to \(D^* \) and we have

\[
\frac{\partial F^*}{\partial t}(t, \omega) = \sigma_k'(X_1^*(t, \omega)) \frac{\partial X_1^*}{\partial t}(t, \omega) - \frac{\partial X_2^*}{\partial t}(t, \omega)
\]

and

\[
\frac{\partial F^*}{\partial \omega}(\alpha(\omega), \omega_0) = \sigma_k'(X_1(\alpha(\omega), \omega_0)) \alpha'(X_1(\alpha(\omega), \omega_0)) - \alpha^2(X_1(\alpha(\omega), \omega_0)) \neq 0.
\]

Therefore by the implicit function theorem, we deduce that there exists \(\delta \in (0, \eta) \) and a unique function \(f : (\omega_0 - \delta, \omega_0 + \delta) \rightarrow \mathbb{R} \) such that

\[
F^*(t, \omega) = 0 \iff t = f(\omega)
\]

\[
f(\omega_0) = \alpha(\omega_0) \quad \text{and} \quad f \in C^1(\omega_0 - \delta, \omega_0 + \delta).
\]

Since \(F^*(\alpha(\omega), \omega) = F(\alpha(\omega), \omega) = 0 \), it follows that \(\alpha(\omega) = f(\omega) \) and \(\alpha \in C^1(\omega_0 - \delta, \omega_0 + \delta) \). Thus \(\alpha \in C^1(\pi_x(\Omega \cap [y = h])) \).

In the same way we prove that \(\beta \in C^1(\pi_x(\Omega \cap [y = h])) \).

For each \(h \in \pi_y(\Omega) \) we define the set

\[
D_h = \{ (t, \omega) / \omega \in \pi_x(\Omega \cap [y = h]), t \in (\alpha(\omega), \beta(\omega)) \}
\]

and consider the mappings \(T_h \) and \(S_h \) defined by:

\[
T_h : D_h \rightarrow T_h(D_h)
\]

\[
(t, \omega) \mapsto T_h(t, \omega) = X(t, \omega) = (T^1_h, T^2_h)(t, \omega)
\]

\[
S_h : D_h \rightarrow S_h(D_h)
\]

\[
(t, \omega) \mapsto S_h(t, \omega) = (\omega, L_h(t, \omega)) = (\omega, \tau)
\]

where \(L_h(t, \omega) = \int_{\alpha(\omega)}^{\tau} |A(X(s, \omega), e)|ds = \int_{\alpha(\omega)}^{\tau} |X'(s, \omega)|ds \) represents the arc Length of the curve \(X(\cdot, \omega) \) from the point \(X(\alpha(\omega), \omega) \) to the point \(X(t, \omega) \). Then we have

Proposition 2.3.

\[
\Omega = \bigsqcup_{h \in \pi_y(\Omega)} T_h(D_h), \quad T_h \text{ and } S_h \text{ are } C^1 \text{ diffeomorphisms.}
\]

Proof. First for each \((x, y) \in \Omega \) we have \((x, y) = X(0, \omega) = T_h(0, \omega) \) with \(\omega = x \) and \(h = y \).

Next thanks to (2.3) we have \(T_h \in C^1(D_h) \). By Proposition 2.2, \(S_h \) is also in \(C^1(S_h(D)) \). To see that they are diffeomorphisms, it suffices to verify that \(det(JT_h) \) and \(det(JS_h) \) do not vanish. We denote by \(JF \) the Jacobian matrix of the transformation \(F \) and by \(det(JF) \) the determinant of \(JF \).
First one can check that:

\[
\begin{align*}
\det J S_h &= -|A(X(t,\omega),e)| < 0 \\
Y_h(t,\omega) &= \det(J T_h) = a^1(X(t,\omega)) \frac{\partial X_2}{\partial \omega} - a^2(X(t,\omega)) \frac{\partial X_1}{\partial \omega} \\
\frac{\partial Y_h}{\partial t}(t,\omega) &= Y_h(t,\omega). (\text{div}(A(.,e)))(X(t,\omega)).
\end{align*}
\]

Therefore

\[
Y_h(t,\omega) = Y_h(0,\omega) \exp(\int_0^t \{\text{div}(A(.,e))\}(X(s,\omega))ds).
\]

Since \(Y_h(0,\omega) = -a^2(X(0,\omega)) < 0\), we get \(Y_h(t,\omega) < 0\) \(\forall t \in (\alpha(\omega), \beta(\omega)), \omega \in \pi_x(\Omega \cap [y = h]) \).

\[\square\]

Theorem 2.4. Let \((u,g)\) be a solution of \((P)\). We have for each \(h \in \pi_y(\Omega)\)

\[
\frac{\partial}{\partial t} \left(g_0 T_h o S_h^{-1} (-Y o S_h^{-1})\right) \geq 0 \quad \text{in } D'(S_h(D_h)).
\]

Proof. Let \(\phi \in D(S_h(D_h)), \phi \geq 0\). Then \(\phi o S_h o T_h^{-1} \in C^0_c(T_h(D_h))\) and by (2.2), we have

\[
\int_{T_h(D_h)} \phi(X,e) \nabla(\phi o S_h o T_h^{-1})dX \leq 0.
\]

Using the change of variables \(T_h(t,\omega) = (x,y)\) and the fact that

\[
A(X(t,\omega),e)(\nabla(\phi o S_h o T_h^{-1}))(\nabla X_h, -Y_h(t,\omega)) = -Y_h(t,\omega) \frac{\partial}{\partial t} (\phi o S_h)
\]

we get

\[
\int_{D_h} g_0 T_h(t,\omega).(-Y_h(t,\omega)) \frac{\partial}{\partial t} (\phi o S_h)d\omega \leq 0.
\]

Now if we use the change of variables \(S_h^{-1}\), we get

\[
\int_{S_h(D_h)} g_0 T_h o S_h^{-1}(\omega,\tau).(-Y_h o S_h^{-1}(\omega,\tau))\left(\frac{\partial}{\partial T}(\phi o S_h)\right) o S_h^{-1} |\det J S_h| d\omega d\tau \leq 0.
\]

Taking into account that

\[
\left(\frac{\partial}{\partial T}(\phi o S_h)\right) o S_h^{-1} = \frac{\partial \phi}{\partial T} |A(.,e)| o T_h o S_h^{-1}(\omega,\tau) = \frac{\partial \phi}{\partial T} |\det J S_h|,
\]

we obtain

\[
\int_{S_h(D_h)} g_0 T_h o S_h^{-1}(\omega,\tau).(-Y_h o S_h^{-1}(\omega,\tau)) \frac{\partial \phi}{\partial T} d\omega d\tau \leq 0.
\]

\[\square\]

In what follows we assume that there exist nonnegative constants \(\kappa, \sigma\) and positive constants \(\lambda_0, \lambda_1\) with \(\sigma \leq 1\) and \(\lambda_1 \geq \lambda_0\) such that for all \(X,Y \in \Omega, \zeta, \xi \in \mathbb{R}^2\)

\[
\sum_{i,j} \frac{\partial A^4}{\partial \xi_j}(X,\zeta) \xi i \xi j \geq \lambda_0 (\kappa + |\zeta|^2)|\xi|^2, \tag{2.7}
\]
\[\left| \frac{\partial A^i}{\partial \xi_j}(X, \zeta) \right| \leq \lambda_1 (\zeta + |\zeta|^{q-2}), \]
and when \(q \neq 2 \), we assume

\[|A(X, \zeta) - A(Y, \zeta)| \leq \lambda_1 (1 + |\zeta|^{q-1}) |(x - y)|^\rho. \]

\[(2.8) \]

\[(2.9) \]

\textbf{Remark 2.5} Note that assumptions (2.7)-(2.8) are satisfied in the case where \(A(X, \zeta) = |\zeta|^{q-2} \zeta \). Moreover under assumptions (2.7)-(2.8), we deduce from (2.1) (see [R] [Du]) that \(u \in C^{0,\gamma}_{\text{loc}}(\Omega \cup S_2 \cup S_3) \) for some \(\gamma \in (0,1) \). Also by (2.1) and (P) we have \(\text{div}(A(X, u)) = 0 \) in \(D'([u > x_2]) \). It follows then by (2.7)-(2.9) (see [Di] [Le] for example) that \(u \in C^{1,\delta}_{\text{loc}}([u > x_2]) \) for some \(\delta \in (0,1) \).

We need the following maximum principle (see [Da])

\textbf{Lemma 2.6.} \textbf{(Strong maximum principle)}

Let \(u_1 \) and \(u_2 \) be two functions defined on a domain \(D \) of \(\mathbb{R}^2 \) such that \(u_1, u_2 \in C^1(D), u_1 \geq u_2 \) in \(D \), the set \(\{ X \in D | \nabla u_1(X) = \nabla u_2(X) = 0 \} \) is empty and \(\text{div}(A(X, \nabla u_1) - A(X, \nabla u_2)) \leq 0 \). Then we have either

\[u_1 = u_2 \text{ in } D \text{ or } u_1 > u_2 \text{ in } D. \]

The following theorem will allow us to define the free boundary \(\partial([u > y]) \cap \Omega \) locally as a curve.

\textbf{Theorem 2.7.} Let \((u, g)\) be a solution of (P) and let \(X_0 = T_{\omega} o S_{\omega}^{-1}(\omega_0, \tau_0) = (x_0, y_0) \in \Omega \).

i) If \(u(X_0) = u o T_\omega o S_{\omega}^{-1}(\omega_0, \tau_0) > y_0 \) then there exists \(\epsilon > 0 \) such that

\[u o T_\omega o S_{\omega}^{-1}(\omega, \tau) > T_{\omega}^\delta o S_{\omega}^{-1}(\omega, \tau) \quad \forall (\omega, \tau) \in C_\epsilon \]

where \(C_\epsilon = \{(\omega, \tau) \in S_\omega(D_\omega) | |\omega - \omega_0| < \epsilon, \tau < \tau_0 + \epsilon\} \) i.e.

\[u(x, y) > y \quad \forall (x, y) \in T_\omega o S_{\omega}^{-1}(C_\epsilon). \]

ii) If \(u(X_0) = y_0 = u o T_\omega o S_{\omega}^{-1}(\omega_0, \tau_0) = T_{\omega}^\delta o S_{\omega}^{-1}(\omega_0, \tau_0) \) then

\[u o T_\omega o S_{\omega}^{-1}(\omega_0, \tau) = T_{\omega}^\delta o S_{\omega}^{-1}(\omega_0, \tau) \quad \forall \tau \geq \tau_0. \]

\textbf{Proof.} i) By continuity, there exists \(\epsilon > 0 \) such that

\[u o T_\omega o S_{\omega}^{-1}(\omega, \tau) > T_{\omega}^\delta o S_{\omega}^{-1}(\omega, \tau) \quad \forall (\omega, \tau) \in (\omega_0 - \epsilon, \omega_0 + \epsilon) \times (\tau_0 - \epsilon, \tau_0 + \epsilon) = Q_\epsilon . \]

Then \(g o T_\omega o S_{\omega}^{-1}(\omega, \tau) = 0 \) for a.e. \((\omega, \tau) \in Q_\epsilon \). By Theorem 2.4 and since \(-Y h o S_{\omega}^{-1} > 0, g \geq 0\), we get \(g o T_\omega o S_{\omega}^{-1} = 0 \) a.e. in \(C_\epsilon \), i.e. \(g = 0 \) a.e. in \(T_\omega o S_{\omega}^{-1}(C_\epsilon) \) (see Figure 3).

By (2.1) we have \(\text{div}(A(X, \nabla u)) = \text{div}(g(A(X, e))) = 0 \) in \(D'(T_\omega o S_{\omega}^{-1}(C_\epsilon)) \). Since \(\text{div}(A(X, \nabla y)) \geq 0 \) in \(D'(\Omega) \), \(\nabla y = e \neq 0 \), \(u \geq y \) in \(T_\omega o S_{\omega}^{-1}(C_\epsilon) \) and \(u > y \) in \(T_\omega o S_{\omega}^{-1}(Q_\epsilon) \), then by Lemma 2.6, we get

\[u > y \quad \text{in } T_\omega o S_{\omega}^{-1}(C_\epsilon). \]
ii) Assume that there exists $\tau_1 > \tau_0$ such that $\omega_0 T_h \circ o S_h^{-1} (\omega_0, \tau_1) > T_h^2 \circ o S_h^{-1} (\omega_0, \tau_1)$. Then by i) there exists $\varepsilon > 0$ such that $\omega_0 T_h \circ o S_h^{-1} (\omega, \tau) > T_h^2 \circ o S_h^{-1} (\omega, \tau)$ for all $(\omega, \tau) \in S_h(D_h) / |\omega - \omega_0| < \varepsilon$, $\tau < \tau_1 + \varepsilon$. Then $\omega_0 T_h \circ o S_h^{-1} (\omega_0, \tau_0) > T_h^2 \circ o S_h^{-1} (\omega_0, \tau_0)$ which is a contradiction.

Figure 3

Remark 2.8. i) The result of theorem 2.7 means that if a point X_0 is in the wet region, then the part of the curve $X(., \omega)$ solution of $E(\omega, h)$ and passing through X_0 at t_0 remains in the wet region for all $t \leq t_0$.

ii) In [Ly1], [ChiL] and [Ly4] we assumed that $A(X,e) = k(X) e$ which leads to $X_1'(t) = 0$ for all t and the curve $X(., \omega)$ is a vertical segment. Therefore the free boundary is represented by a curve of the form $y = \Phi(x)$.

iii) We have $u = p + y = \varphi + y > y$ on $S_{3,i}$ $(\varphi > 0$ on S_3, $i = 1, ..., N$ and $u \in C^0(\Omega \cup S_3)$, then $u > y$ below S_3 in the following sense:

$$u(X(t,\omega)) > X_2(t,\omega) \quad \forall t \in [\alpha(\omega), \beta(\omega)] \quad \text{such that} \quad X(\beta(\omega), \omega) \in S_3.$$

Now for each $h \in \pi_\gamma(\Omega)$ we define the function Φ_h on $\pi_\delta(\Omega \cap [y = h])$ by:

$$\Phi_h(\omega) = \begin{cases} \sup \{\tau / (\omega, \tau) \in S_h(D_h), \omega_0 T_h \circ o S_h^{-1} (\omega, \tau) > T_h^2 \circ o S_h^{-1} (\omega, \tau)\} & \text{if this set is not empty} \\ 0 & \text{otherwise.} \end{cases}$$

Φ_h is well defined and we have:
Proposition 2.9. Φ_h is lower semi-continuous on $\pi_\ast(\Omega \cap \{y = h\})$. Moreover

$$[p \circ T_h \circ S_h^{-1}(\omega, \tau) > 0] = [u \circ T_h \circ S_h^{-1}(\omega, \tau) > T_h^2 \circ S_h^{-1}(\omega, \tau)] = [\tau < \Phi_h(\omega)].$$

Proof.

* Let $\omega_0 \in \pi_\ast(\Omega \cap \{y = h\})$

 if $\Phi_h(\omega_0) = 0$ then for $\varepsilon > 0$, $\Phi_h(\omega) \geq 0 > \Phi_h(\omega_0) - \varepsilon$ \quad $\forall \omega,$

 if $\Phi_h(\omega_0) > 0$ then for $\varepsilon > 0$, there exists $\tau_\varepsilon > 0$ such that

 $$\Phi_h(\omega_0) \geq \tau_\varepsilon > \Phi_h(\omega_0) - \varepsilon / 2$$

 and

 $$(u \circ T_h \circ S_h^{-1} - T_h^2 \circ S_h^{-1})(\omega_0, \tau_\varepsilon) = p \circ T_h \circ S_h^{-1}(\omega_0, \tau_\varepsilon) > 0.$$

There exists a unique $t_\varepsilon \in (\alpha(\omega_0), \beta(\omega_0))$ such that $\tau_\varepsilon = L_h(t_\varepsilon, \omega_0)$.

We can find (see Theorem 3.4 p 24 in [H]) $\eta_1 > 0$ such that

$$X(t, \omega) \text{ exists } \forall (t, \omega) \in [\alpha(\omega_0), \beta(\omega_0)] \times (\omega_0 - \eta_1, \omega_0 + \eta_1)$$

and $(t, \omega) \mapsto X(t, \omega)$ is continuous.

Then by continuity, there exists $0 < \eta_2 < \eta_1$ such that

$$p(X(t, \omega)) > 0 \quad \forall (t, \omega) \in (t_\varepsilon - \eta_2, t_\varepsilon + \eta_2) \times (\omega_0 - \eta_2, \omega_0 + \eta_2).$$

By Theorem 2.7, we deduce that

$$p(X(t, \omega)) > 0 \quad \forall (t, \omega) \in (\alpha(\omega), t_\varepsilon + \eta_2) \times (\omega_0 - \eta_2, \omega_0 + \eta_2).$$

Using the definition of Φ_h, we have for $\omega \in (\omega_0 - \eta_2, \omega_0 + \eta_2)$

$$\Phi_h(\omega) = \sup \{\tau / (\omega, \tau) \in S_h(D_h) \text{ and } p \circ T_h \circ S_h^{-1}(\omega, \tau) > 0\}$$

$$= \sup_{t \in (\alpha(\omega), \beta(\omega))} \{L_h(t, \omega) / (t, \omega) \in D_h \text{ and } p(X(t, \omega)) > 0\}$$

$$\geq L_h(t_\varepsilon, \omega_0).$$

Since $L_h(t_\varepsilon, \omega) = \int_{\alpha(\omega)}^{t_\varepsilon} |A(X(s, \omega), e)| ds$ is continuous with respect to ω, there exists $0 < \eta < \eta_2$ such that

$$\forall \omega \in (\omega_0 - \eta, \omega_0 + \eta), \quad L_h(t_\varepsilon, \omega) = \int_{\alpha(\omega)}^{t_\varepsilon} |A(X(s, \omega), e)| ds$$

$$\geq \int_{\alpha(\omega)}^{t_\varepsilon} |A(X(s, \omega_0), e)| ds \geq \frac{\varepsilon}{2} = L_h(t_\varepsilon, \omega_0) - \frac{\varepsilon}{2}$$

$$\geq \tau_\varepsilon - \frac{\varepsilon}{2} \geq \Phi_h(\omega_0) - \frac{\varepsilon}{2}.$$

thus $\Phi_h(\omega) \geq \Phi_h(\omega_0) - \varepsilon$ \quad $\forall \omega \in (\omega_0 - \eta, \omega_0 + \eta)$.

** Let $(\omega_0, \tau_0) \in [\tau < \Phi(\omega)]$. Assume that $p \circ T_h \circ S_h^{-1}(\omega_0, \tau_0) = 0$ then by Theorem 2.7, $p \circ T_h \circ S_h^{-1}(\omega_0, \tau) = 0$ $\forall \tau \geq \tau_0$. So $\Phi_h(\omega_0) = \sup \{\tau / (\omega_0, \tau) \in S_h(D_h) \text{ and } p \circ T_h \circ S_h^{-1}(\omega_0, \tau) > 0\} \leq \tau_0$, which is a contradiction.

Now let $(\omega_0, \tau_0) \in [p \circ T_h \circ S_h^{-1}(\omega, \tau) > 0]$. By continuity, there exists $\eta > 0$ such that $p \circ T_h \circ S_h^{-1}(\omega_0, \tau) > 0$ $\forall \tau \in (\tau_0 - \eta, \tau_0 + \eta)$. By Theorem 2.7, we deduce that $: p \circ T_h \circ S_h^{-1}(\omega, \tau) > 0$ $\forall \tau < \tau_0 + \eta$ such that

$(\omega_0, \tau) \in S_h(D_h)$. Then $\Phi_h(\omega_0) \geq \tau_0 + \eta > \tau_0$. Hence $(\omega_0, \tau) \in [\tau < \Phi_h(\omega)]$.

The following theorem will play an important role in the proof of the continuity of the free boundary.

Theorem 2.10. Let \((u, g)\) be a solution of \((P)\). Let \((\omega_1, \tau_0), (\omega_2, \tau_0) \in S_h(D_h)\) with \(\omega_1 < \omega_2\) and
\[
poT_hoS_h^{-1}(\omega_1, \tau_0) = 0 \quad \forall (\omega_1, \tau) \in S_h(D_h), \quad \tau > \tau_0 \geq 0.
\]
Set \(Z_{\tau_0} = T_hoS_h^{-1}(\omega_1, \omega_2) \times (\tau_0, +\infty) \cap S_h(D_h)\) and assume that \(Z_{\tau_0} \cap S_3 = \emptyset\).
Let \(y_0 \in \mathbb{R}\) such that \(D_{y_0, \tau_0} = [y > y_0] \cap Z_{\tau_0} \neq \emptyset\). Then we have:
\[
\int_{D_{y_0, \tau_0}} (A(X, \nabla u) - gA(X, e)) \cdot e \, dX \leq 0.
\]

Figure 4

To prove this theorem, we need the following lemma:

Lemma 2.11. Under the assumptions of Theorem 2.10, we have
\[
\int_{D_{y_0, \tau_0}} (A(X, \nabla u) - \chi([u = y])A(X, e)) \cdot \nabla \zeta \, dX
\leq \int_{\omega_1} (-Y_hoS_h^{-1})(s, \Phi_h(s)). \zeta \circ T_hoS_h^{-1}(s, \Phi_h(s)) \, ds
\]
\[
\forall \zeta \in W^{1,d}(D_{y_0, \tau_0}) \cap C^0(\bar{D}_{y_0, \tau_0}), \quad \zeta \geq 0, \quad \zeta(x, y_0) = 0 \quad \forall (x, y_0) \in \bar{D}_{y_0, \tau_0}.
\]

Proof. For \(\epsilon > 0\), \(\xi = \chi(D_{y_0, \tau_0}) \min \left(\frac{y - y_0}{\epsilon}, \zeta\right)\) is a test function for \((P)\), so we have
\[
\int_{D_{y_0, \tau_0}} A(X, \nabla u) \cdot \nabla \left(\frac{y - y_0}{\epsilon} \wedge \zeta\right) \, dX \leq \int_{D_{y_0, \tau_0}} gA(X, e) \cdot \nabla \left(\frac{y - y_0}{\epsilon} \wedge \zeta\right) \, dX = 0
\]

10
since \(g(y - u) = 0 \) a.e. in \(\Omega \).

Using the monotonicity of \(A \), we get:

\[
\int_{D_{\rho_0, \rho_0} \cap \{u - v \leq c\}} (A(X, \nabla u) - A(X, e)) \cdot \nabla \zeta \, dX \leq - \int_{D_{\rho_0, \rho_0}} A(X, e) \cdot \nabla \left(\frac{u - v}{\epsilon} \wedge \zeta \right) \, dX = -I_\epsilon.
\]

Note that we have

\[
I_\epsilon = \int_{D_{\rho_0, \rho_0}} \chi([u > y]) A(X, e) \cdot \nabla \left(\frac{u - y}{\epsilon} \wedge \zeta \right) \, dX
\]

\[
= - \int_{D_{\rho_0, \rho_0}} \chi([u > y]) A(X, e) \cdot \nabla \zeta \, dX - \int_{D_{\rho_0, \rho_0}} A(X, e) \cdot \nabla \left(\zeta - \frac{u - y}{\epsilon} \right)^+ \chi([u > y]) \, dX
\]

\[
= I^1 - I^2.
\]

Now using the change of variables \(T_h \), we obtain

\[
I^2 = \int_{T_h^{-1}(D_{\rho_0, \rho_0})} \chi([p_0 T_h(t, \omega) > 0]) A(X(t, \omega), e) \cdot \nabla \left(\zeta - \frac{p}{\epsilon} \right)^+ o T_h \cdot |Y_h(t, \omega)| \, dt \, d\omega.
\]

Since we have

\[
A(X(t, \omega), e) \cdot \nabla \left(\zeta - \frac{p}{\epsilon} \right)^+ o T_h \cdot |Y_h(t, \omega)| = -Y_h(t, \omega) \cdot \frac{\partial}{\partial t} \left(\left(\zeta - \frac{p}{\epsilon} \right)^+ (X(t, \omega, h)) \right),
\]

this leads to

\[
I^2 = -\int_{T_h^{-1}(D_{\rho_0, \rho_0})} \chi([p_0 T_h(t, \omega) > 0]) Y_h(t, \omega) \cdot \frac{\partial}{\partial t} \left(\left(\zeta - \frac{p}{\epsilon} \right)^+ (X(t, \omega, h)) \right) \, dt \, d\omega.
\]

Next using the change of variables \(S_h^{-1} \), we get

\[
I^2 = -\int_{S_h o T_h^{-1}(D_{\rho_0, \rho_0})} \chi([p_0 T_h o S_h^{-1}(\omega, \tau) > 0]) Y_h o S_h^{-1}(\omega, \tau)
\]

\[
\cdot \left(\frac{\partial}{\partial \tau} \left(\left(\zeta - \frac{p}{\epsilon} \right)^+ (X(t, \omega, h)) \right) \right) o S_h^{-1}(\omega, \tau) \cdot |det J S_h^{-1}| \, d\omega \, d\tau
\]

\[
= -\int_{S_h o T_h^{-1}(D_{\rho_0, \rho_0})} \chi([p_0 T_h o S_h^{-1}(\omega, \tau) > 0]) Y_h o S_h^{-1}(\omega, \tau) \cdot \frac{\partial}{\partial \tau} \left(\left(\zeta - \frac{p}{\epsilon} \right)^+ o T_h o S_h^{-1}(\omega, \tau) \right) \, d\omega \, d\tau
\]

since we have

\[
\left(\frac{\partial}{\partial \tau} \left(\left(\zeta - \frac{p}{\epsilon} \right)^+ o T_h \right) o S_h^{-1}(\omega, \tau) \right) = \frac{\partial}{\partial \tau} \left(\left(\zeta - \frac{p}{\epsilon} \right)^+ o T_h o S_h^{-1}(\omega, \tau) \right) \cdot |A(T_h o S_h^{-1}(\omega, \tau), e)|.
\]

Then

\[
I^2 = -\int_{(\omega_1, \omega_2) \times (\tau_0, +\infty) \cap S_h(D_h) \cap S_h o T_h^{-1}([y > y_0])} \chi([\tau < \Phi_h(\omega)]) Y_h o S_h^{-1}(\omega, \tau)
\]

\[
\cdot \frac{\partial}{\partial \tau} \left(\left(\zeta - \frac{p}{\epsilon} \right)^+ o T_h o S_h^{-1}(\omega, \tau) \right) \, d\omega \, d\tau.
\]

Note that \(\forall \omega \in (\omega_1, \omega_2), \exists t_{\rho_0}(\omega) \) such that \(X_2(t_{\rho_0}(\omega), \omega) = y_0, \tau_{\rho_0}(\omega) = \int_{t_{\rho_0}(\omega)}^{t_{\rho_0}(\omega)} |A(X(s, \omega), e)| \, ds \) and we can see that we have

\[
(\omega_1, \omega_2) \times (\tau_0, +\infty) \cap S_h(D_h) \cap S_h o T_h^{-1}([y > y_0])
\]

\[
= \{ (\omega, \tau) \in S_h(D_h), \omega \in (\omega_1, \omega_2), \tau > \sup(\tau_0, \tau_{\rho_0}(\omega)) \}.
\]
It follows that
\[I_2^2 = \int_{\omega_1}^{\omega_2} \int_{\sup(r_0, r_{y_0})}^{\Phi_h(\omega)} (-Y_h \circ S_h^{-1})(\omega, \tau). \frac{\partial}{\partial \tau} \left((\zeta - \frac{p}{\epsilon}) \circ T_h \circ S_h^{-1}\right)(\omega, \tau) d\omega d\tau. \]

By the second mean value theorem we have
\[\int_{\sup(r_0, r_{y_0})}^{\Phi_h(\omega)} (-Y_h \circ S_h^{-1})(\omega, \tau). \frac{\partial}{\partial \tau} \left((\zeta - \frac{p}{\epsilon}) \circ T_h \circ S_h^{-1}\right)(\omega, \tau) d\tau \]
\[= (-Y_h \circ S_h^{-1})(\omega, \Phi_h(\omega)) \int_{\tau^*(y_0, \omega)}^{\Phi_h(\omega)} \frac{\partial}{\partial \tau} \left((\zeta - \frac{p}{\epsilon}) \circ T_h \circ S_h^{-1}\right)(\omega, \tau) d\tau \]
for almost all \(\omega \in (\omega_1, \omega_2) \), where \(\tau^*(y_0, \omega) \in [r_{y_0}(\omega), \Phi_h(\omega)] \). Moreover, we have
\[\int_{\tau^*(y_0, \omega)}^{\Phi_h(\omega)} \frac{\partial}{\partial \tau} \left((\zeta - \frac{p}{\epsilon}) \circ T_h \circ S_h^{-1}\right)(\omega, \tau) d\tau \leq \zeta \circ T_h \circ S_h^{-1}(\omega, \Phi_h(\omega)). \]

So we deduce that
\[I_2^2 \leq \int_{\omega_1}^{\omega_2} (-Y_h \circ S_h^{-1})(\omega, \Phi_h(\omega)). \zeta \circ T_h \circ S_h^{-1}(\omega, \Phi_h(\omega)) d\omega. \]

Thus
\[\int_{D_{y_0, r_0} \cap \{u - y \geq \zeta\}} (A(X, \nabla u) - A(X, e)). \nabla \zeta dX = \int_{D_{y_0, r_0}} \chi([u > y]). A(X, e). \nabla \zeta dX \]
\[\leq \int_{\omega_1}^{\omega_2} (-Y_h \circ S_h^{-1})(\omega, \Phi_h(\omega)). \zeta \circ T_h \circ S_h^{-1}(\omega, \Phi_h(\omega)) d\omega \]
and the lemma follows by letting \(\epsilon \) go to 0. \(\square \)

Proof of Theorem 2.10.

Let \(\epsilon > 0 \) and \(\theta_\epsilon(\omega) = \min\left(\frac{\omega - \omega_1}{\epsilon}, 1\right), \min\left(\frac{\omega_2 - \omega}{\epsilon}, 1\right) \), \(h_\epsilon = \theta_\epsilon \circ S_h \circ T_h^{-1} \). Since \(\chi(D_{y_0, r_0})h_\epsilon(y - y_0) \) is a test function for (P) we have
\[\int_{D_{y_0, r_0}} (A(X, \nabla u) - gA(X, e)) . e dX = \int_{D_{y_0, r_0}} (A(X, \nabla u) - gA(X, e)) . \nabla (y - y_0) dX \]
\[= \int_{D_{y_0, r_0}} (A(X, \nabla u) - gA(X, e)) . \nabla (h_\epsilon(y - y_0)) dX \]
\[+ \int_{D_{y_0, r_0}} (A(X, \nabla u) - gA(X, e)) . \nabla ((1 - h_\epsilon)(y - y_0)) dX \]
\[\leq \int_{D_{y_0, r_0}} (A(X, \nabla u) - gA(X, e)) . \nabla ((1 - h_\epsilon)(y - y_0)) dX = J_\epsilon. \]

Note that
\[J_\epsilon = \int_{D_{y_0, r_0}} (A(X, \nabla u) - \chi([u = y]). A(X, e)) . \nabla ((1 - h_\epsilon)(y - y_0)) dX \]
\[+ \int_{D_{y_0, r_0}} (\chi([u = y]) - g). A(X, e). \nabla ((1 - h_\epsilon)(y - y_0)) dX = J_1^\epsilon + J_2^\epsilon. \]

By Lemma 2.11 with \(\zeta = (1 - h_\epsilon).(y - y_0) = (1 - \theta_\epsilon \circ S_h \circ T_h^{-1}).(y - y_0) \), we have
\[J_1^\epsilon \leq \int_{\omega_1}^{\omega_2} (-Y_h \circ S_h^{-1})(\omega, \Phi_h(\omega)). (1 - \theta_\epsilon(\omega)). (y - y_0) \circ T_h \circ S_h^{-1}(\omega, \Phi_h(\omega)) d\omega. \]
Moreover
\begin{align*}
J_{2}^{T_{h}} &= \int_{S_{h} \cap \{w, \tau = \tau_{0}\}} \left(\chi([\omega, \tau = 0]) - g_{h}T_{h} \chi_{\tau_{0}}^{1}(w, \tau) \right) \cdot \frac{\partial}{\partial \tau} \left((1 - \theta_{h}(w)) \cdot (y - y_{0}) \cdot (w, \tau) \right) \, dw \, d\tau \\
&= \int_{S_{h} \cap \{w, \tau = \tau_{0}\}} \left(\chi([\omega, \tau = 0]) - g_{h}T_{h} \chi_{\tau_{0}}^{1}(w, \tau) \right) \cdot \frac{\partial}{\partial \tau} \left((1 - \theta_{h}(w)) \cdot (T_{h} \chi_{\tau_{0}}^{1}(w, \tau) \right) \, dw \, d\tau.
\end{align*}

Since $\theta_{h} \to 1$ when $e \to 0$, we conclude that $J_{1}^{T_{h}} + J_{2}^{T_{h}} \to 0$. This achieves the proof. □

Theorem 2.12. Let (u, g) be a solution of (P). Let C_{h} be the connected component of $\{\tau < \Phi_{h}(w)\}$ such that $T_{h} \chi_{\tau_{0}}^{1}(C_{h}) \cap S_{3} = \emptyset$. Set $C_{h} = T_{h} \chi_{\tau_{0}}^{1}(C_{h})$, then we have
\[\int_{C_{h}} (A(X, \nabla u) - gA(X, e)).e \, dX \leq 0. \]

Proof.

1st step: Arguing as in the proof of Lemma 2.11, we get:
\[\int_{C_{h}} \left(A(X, \nabla u) - \chi([u = y])A(X, e) \right) \cdot \nabla \zeta \, dX \leq \int_{\pi_{w}(C_{h})} (-Y_{h} \Phi_{h}(s) \Phi_{h}(s)) \cdot \zeta \, ds \]
\[\forall \zeta \in W^{1,\infty}(C_{h}) \cap C^{0}(C_{h}), \quad \zeta \geq 0. \]

2nd step: Let $e > 0$ and $A = R \setminus \pi_{w}(C_{h})$. Set $\alpha_{e}(w) = \min \left(1, \frac{d(\omega, A)}{e}\right)$ and $h_{e} = \alpha_{e} T_{h} \tau_{1}$. Then we have
\[\int_{C_{h}} (A(X, \nabla u) - gA(X, e)).e \, dX = \int_{C_{h}} (A(X, \nabla u) - gA(X, e)).e \, dX \\
+ \int_{C_{h}} (A(X, \nabla u) - gA(X, e)).e \, dX \\
\leq \int_{C_{h}} (A(X, \nabla u) - gA(X, e)).e \, dX = J_{e}, \]

since $\chi(C_{h})h_{e}y$ is a test function for (P). Moreover, one has
\[J_{e} = \int_{C_{h}} (A(X, \nabla u) - \chi([u = y])A(X, e)).e \, dX \\
+ \int_{C_{h}} (\chi([u = y]) - gA(X, e)).e \, dX \\
and one can argue as at the end of the proof of Theorem 2.10. □

Theorem 2.13. Let (u, g) be a solution of (P). Let $X_{0} = (x_{0}, y_{0}) = T_{h} \chi_{\tau_{0}}^{1}(\omega_{0}, \tau_{0})$ be a point in Ω, $(\omega_{0}, \tau_{0}) \in S_{h}(D_{h})$. We denote by $B_{r}(\omega_{0}, \tau_{0})$ a ball with center (ω_{0}, τ_{0}) and radius r contained in $S_{h}(D_{h})$. If $p T_{h} \chi_{\tau_{0}}^{1} = 0$ in $B_{r}(\omega_{0}, \tau_{0})$ then we have
\[p T_{h} \chi_{\tau_{0}}^{1} = 0 \quad \text{in } D_{r}, \quad g T_{h} \chi_{\tau_{0}}^{1} = 1 \quad \text{a.e. in } D_{r}. \]
where $D_r = \{(\omega, \tau) \in S_h(D_h), \ |\omega - \omega_0| < r, \ \tau > \tau_0\} \cup B_r(\omega_0, \tau_0)$ i.e.

if $p = 0$ in $T_h \circ S_h^{-1}(B_r(\omega_0, \tau_0))$ then $p = 0$, $g = 1$ a.e. in $T_h \circ S_h^{-1}(D_r)$.

Figure 5

Proof. Note that by Remark 2.8, we necessarily have

$$X(\beta(\omega), \omega) \in S_2 \quad \forall \omega \in (\omega_0 - r, \omega_0 + r).$$

By Theorem 2.7 ii), we have $p o T_h \circ S_h^{-1} = 0$ in D_r.

Applying Theorem 2.10 with domains $Z_{\omega_0} = T_h \circ S_h^{-1}((\omega_1, \omega_2) \times (\tau_0, +\infty) \cap S_h(D_h)) \subset T_h \circ S_h^{-1}(D_r)$ we obtain

$$\int_{[y>y_0] \cap Z_{\omega_0}} (1 - g) A(X, e) \cdot e dX \leq 0 \quad \forall y_0 \in R \text{ such that } [y > y_0] \cap Z_{\omega_0} \neq \emptyset.$$

So $g = 1$ a.e. in Z_{ω_0}. This holds for all domains Z_{ω_0} in D_r and we get $g = 1$ a.e. in D_r. \hfill \square

The following result is a sort of maximum principle.
Theorem 2.14. Let \((u, g)\) be a solution of \((P)\), \(X_0 = (x_0, y_0) = T_h \circ S_h^{-1}(\omega_0, \tau_0)\) be a point of \(\Omega\) and \(B_r\) be the open ball in \(S_h(D_h)\) with center \((\omega_0, \tau_0)\) and radius \(r\). Then we cannot have the following occurrences

\[
\begin{align*}
(i) & \quad \rho H_\tau S_h^{-1}(\omega_0, \tau) = 0 & & \forall \tau \in (\tau_0 - r, \tau_0 + r) \\
\rho H_\tau S_h^{-1}(\omega, \tau) > 0 & \quad \forall (\omega, \tau) \in B_r \setminus S, & & S = \{\omega_0\} \times (\tau_0 - r, \tau_0 + r), \\
(ii) & \quad \rho H_\omega S_h^{-1}(\omega, \tau) > 0 & & \forall (\omega, \tau) \in B_r \cap [\omega \leq \omega_0] \\
\rho H_\omega S_h^{-1}(\omega, \tau) > 0 & \quad \forall (\omega, \tau) \in B_r \cap [\omega > \omega_0], \\
(iii) & \quad \rho H_\omega S_h^{-1}(\omega, \tau) > 0 & & \forall (\omega, \tau) \in B_r \cap [\omega < \omega_0].
\end{align*}
\]

Proof. i) Let \(\xi \in D(T_h \circ S_h^{-1}(B_r))\). Since \(\pm \xi\) are test functions for \((P)\), we have

\[
\int_{T_h \circ S_h^{-1}(B_r)} (A(X, \nabla u) - g A(X, \xi)) \cdot \nabla \xi dX = 0.
\]

But under assumption i), \(g = 0\) a.e. in \(T_h \circ S_h^{-1}(B_r)\) and so

\[
\int_{T_h \circ S_h^{-1}(B_r)} A(X, \nabla u) \cdot \nabla \xi dX = 0.
\]

It follows then by Lemma 2.6 that \(u > y\) or \(u = y\) in \(T_h \circ S_h^{-1}(B_r)\) which is in contradiction with i).

Figure 6
Let $\xi \in \mathcal{D}(T_h \circ S_h^{-1}(B_r))$, $\xi \geq 0$. Then we have since $\pm \xi$ are test functions for (P)

$$
\int_{T_h \circ S_h^{-1}(B_r)} A(X, \nabla u) \cdot \nabla \xi \, dx = \int_{T_h \circ S_h^{-1}(B_r)} gA(X, e) \cdot \nabla \xi \, dx
$$

$$
= \int_{S_h^{-1}(B_r)} gT_h A(T_h(t, \omega), e)(\nabla \xi) T_h(t, \omega \cdot \nabla \xi) T_h(t, \omega) \, dt \, d\omega
$$

$$
= \int_{S_h^{-1}(B_r)} gT_h (-Y_h(t, \omega), (\frac{\partial}{\partial \tau} (\xi T_h))_{\omega} S_h^{-1} \mid \omega \cdot \nabla \xi) T_h(t, \omega) \, dt \, d\omega
$$

$$
= \int_{B_r} gT_h oS_h^{-1}(-Y_h, \tau)(-Y_h oS_h^{-1}(\omega, \tau), (\frac{\partial}{\partial \tau} (\xi T_h))_{\omega} S_h^{-1} \mid \omega \cdot \nabla \xi) \, d\omega d\tau
$$

$$
= \int_{B_r} gT_h oS_h^{-1}(\omega, \tau)(-Y_h oS_h^{-1}(\omega, \tau), \frac{\partial}{\partial \tau} (\xi T_h))_{\omega} S_h^{-1} \mid \omega \cdot \nabla \xi) \, d\omega d\tau.
$$

Now by Theorem 2.13, we have $gT_h oS_h^{-1} = 1$ a.e. in $B_r \cap [\omega < \omega_0]$ and then

$$
\int_{T_h \circ S_h^{-1}(B_r)} A(X, \nabla u) \cdot \nabla \xi \, dx = \int_{B_r \cap [\omega < \omega_0]} (-Y_h oS_h^{-1}(\omega, \tau), (\frac{\partial}{\partial \tau} (\xi T_h))_{\omega} S_h^{-1} \mid \omega \cdot \nabla \xi) \, d\omega d\tau.
$$

$$
= \int_{B_r \cap [\omega < \omega_0]} \frac{\partial}{\partial \tau} (Y_h oS_h^{-1}(\omega, \tau), (\xi T_h))_{\omega} S_h^{-1} \mid \omega \cdot \nabla \xi) \, d\omega d\tau + \int_{S_h^{-1}(B_r)} (-Y_h oS_h^{-1}(\omega, \tau), (\xi T_h))_{\omega} S_h^{-1} \mid \omega \cdot \nabla \xi) \, d\omega d\tau
$$

It follows then that

$$
\int_{T_h \circ S_h^{-1}(B_r)} (A(X, \nabla u) - A(X, \nabla y)) \cdot \nabla \xi \, dx = -\int_{B_r \cap [\omega < \omega_0]} \frac{\partial}{\partial \tau} (Y_h oS_h^{-1}(\omega, \tau), (\xi T_h))_{\omega} S_h^{-1} \mid \omega \cdot \nabla \xi) \, d\omega d\tau
$$

$$
+ \int_{B_r \cap [\omega > \omega_0]} \frac{\partial}{\partial \tau} (Y_h oS_h^{-1}(\omega, \tau), (\xi T_h))_{\omega} S_h^{-1} \mid \omega \cdot \nabla \xi) \, d\omega d\tau
$$

$$
= -\int_{B_r \cap [\omega > \omega_0]} \frac{\partial}{\partial \tau} (Y_h oS_h^{-1}(\omega, \tau), (\xi T_h))_{\omega} S_h^{-1} \mid \omega \cdot \nabla \xi) \, d\omega d\tau \geq 0.
$$

Figure 7

Since $u \geq y$ in $T_h oS_h^{-1}(B_r)$, $u = y$ in $T_h oS_h^{-1}(B_r \cap [\omega \leq \omega_0])$, $\nabla y = e \neq 0$, we deduce from Lemma 2.6 that $u = y$ in $T_h oS_h^{-1}(B_r)$ which contradicts the fact that $u > y$ in $T_h oS_h^{-1}(B_r \cap [\omega > \omega_0])$. 16
iii) We argue as in ii).

The following result expresses that if the free boundary is of Lebesgue's measure zero, then g is the characteristic function of the dry region.

Theorem 2.15. Let (u, g) be a solution of (P). If the free boundary i.e. the set $\partial \{ p > 0 \} \cap \Omega$ is of Lebesgue's measure zero, then we have:

$$g = \chi(\{ p = 0 \}) = \chi(\{ u = y \}).$$

Proof. First by $(P)i)$, we have $g = 0$ in $\{ p > 0 \}$. Next if $(x_0, y_0) \in \Omega \setminus \{ p > 0 \}$, then since $\Omega \setminus \{ p > 0 \}$ is an open set there exists $\epsilon_0 > 0$ small enough such that $B_{\epsilon_0}(x_0, y_0) \subset \Omega \setminus \{ p > 0 \}$. Moreover for $\epsilon \in (0, \epsilon_0)$ small enough there exists $h \in \pi_p(\Omega)$ such that $B_{\epsilon}(x_0, y_0) \subset T_h(D_p) \cap \{ p = 0 \}$.

For each $\eta > 0$ such that $B_{\eta}(\omega, \tau) \subset S_h\alpha \Sigma^{-1}(B_{\epsilon}(x_0, y_0))$, we have by Theorem 2.13, $g \alpha T_h \Sigma^{-1} = 1$ a.e. in $B_{\eta}(\omega, \tau)$. This means that $g \alpha T_h \Sigma^{-1} = 1$ a.e. in $S_h\alpha \Sigma^{-1}(B_{\epsilon}(x_0, y_0))$ or equivalently $g = 1$ in $B_{\epsilon}(x_0, y_0)$. Therefore $g = 1$ in $\Omega \setminus \{ p > 0 \}$.

Since the set $\partial \{ p > 0 \} \cap \Omega$ is of Lebesgue's measure zero, we conclude that $g = \chi(\{ p = 0 \}) = \chi(\{ u = y \}).$

3. Continuity of the Free Boundary

In this section we assume that \mathcal{A} is strictly monotone in the following sense

$$\mathcal{A}(X, \zeta) - \mathcal{A}(X, \xi) \cdot (\xi - \zeta) > 0 \quad \forall \xi \neq \zeta, \quad \forall X \in \Omega. \quad (3.1)$$

Theorem 3.1. For each $h \in \pi_p(\Omega)$ the function Φ_h is continuous on $\pi_p(\Omega \cap \{ y = h \})$.

17
Proof. It suffices to prove that Φ_h is upper semi-continuous. Let $X_0 = T_h/\circ S_h^{-1}(\omega_0, \tau_0) \in \Omega \cap \partial[p > 0]$. Thanks to Theorem 2.7 we have necessarily $X(\beta(\omega_0), \omega_0) \not\in \mathcal{S}_S$. Let $\varepsilon > 0$ small enough.

i) We first assume that $X(\beta(\omega_0), \omega_0) \not\in \mathcal{S}_S$, where \mathcal{S}_S denotes the closure of S_3 relative to $\partial \Omega$.

Since $p(X_0) = \rho T_h/\circ S_h^{-1}(\omega_0, \tau_0) = 0$ and p, β are continuous, there exists a ball $B_{\varepsilon'}(\omega_0, \tau_0) \ni \varepsilon' > 0$ such that:

$$\begin{cases}
\rho T_h/\circ S_h^{-1}(\omega, \tau) \leq \varepsilon \quad \forall (\omega, \tau) \in B_{\varepsilon'}(\omega_0, \tau_0) \\
X(\beta(\omega), \omega) \not\in \mathcal{S}_S \quad \forall \omega \in (\omega_0 - \varepsilon', \omega_0 + \varepsilon').
\end{cases}$$

Using Theorem 2.14, one of the following situations occurs:

$$\begin{align*}
(a) & \exists (\omega_1, \tau_1) \in B_{\varepsilon'}(\omega_0, \tau_0) \text{ such that } \omega_1 < \omega_0 \text{ and } \rho T_h/\circ S_h^{-1}(\omega_1, \tau_1) = 0 \\
(b) & \exists (\omega_2, \tau_2) \in B_{\varepsilon'}(\omega_0, \tau_0) \text{ such that } \omega_2 > \omega_0 \text{ and } \rho T_h/\circ S_h^{-1}(\omega_2, \tau_2) = 0.
\end{align*}$$

Assume that for example $a)$ is satisfied and set $X_1 = T_h/\circ S_h^{-1}(\omega_1, \tau_1)$ and $\tau_M = \max(\tau_1, \tau_2)$ (see Figure 9).

Then we have by Theorem 2.7

$$\rho T_h/\circ S_h^{-1}(\omega_i, \tau_i) = 0 \quad \forall (\omega_i, \tau) \in S_h(D_h) \text{ such that } \tau > \tau_M \quad (i = 1, 2).$$

Set $Z_{\tau_M} = T_h/\circ S_h^{-1}(\omega_i, \omega_0) \times (\tau_M, +\infty) \cap S_h(D_h)$ and let $y_0 \in \mathbb{R}$ such that $(T_h/\circ S_h^{-1})_1([y = y_0]) \cap B_{\varepsilon'}(\omega_0, \tau_0) \cap [\tau > \tau_M] \neq \emptyset.$

![Diagram](image)

Figure 9

Note that

$$S_h/\circ T_h^{-1}([y = y_0]) = \{(\omega, \tau_{\delta_0}(\omega)) \in S_h(D_h) / \tau_{\delta_0}(\omega) = \int_{\alpha(\omega)}^{\tau_{\delta_0}(\omega)} |A(X(s, \omega), \varepsilon)| ds, \ X_2(\tau_{\delta_0}(\omega), \omega) = y_0\}.$$
Set \(D_{y_0, rM} = [y > y_0] \cap Z_{rM} \neq \emptyset, v(y) = (\epsilon + y_0 - y)^+ + y, \xi(x, y) = \chi(D_{y_0, rM})(u - v)^+ \).

Since \(v \geq y = u \) on \(\partial D_{y_0, rM} \setminus \{(y = y_0)\} \), we have \(\xi = 0 \) on \(\partial D_{y_0, rM} \setminus \{(y = y_0)\} \). Moreover \(v(y_0) = \epsilon + y \geq u(x, y_0) \) and then \(\xi(x, y_0) = 0 \). It follows that \(\xi = 0 \) on \(\partial D_{y_0, rM} \). So \(\pm \xi \) are test functions for (P) and we have

\[
\int_{D_{y_0, rM}} (A(X, \nabla u) - gA(X, e)) \nabla (u - v)^+ dX = 0. \tag{3.2}
\]

We also have

\[
\int_{D_{y_0, rM}} (A(X, \nabla v) - \chi([v = y])A(X, e)) \nabla (u - v)^+ dX = 0. \tag{3.3}
\]

Subtracting (3.3) from (3.2), we obtain

\[
\int_{D_{y_0, rM}} ((A(X, \nabla u) - A(X, \nabla v)) + \chi([v = y]) - gA(X, e)) \nabla (u - v)^+ dX = 0
\]

which can be written

\[
\int_{D_{y_0, rM} \cap \{v > y\}} (A(X, \nabla u) - A(X, \nabla v)) \nabla (u - v)^+ dX
\]

\[
+ \int_{D_{y_0, rM} \cap \{v = y\}} (A(X, \nabla u) - gA(X, e)) \nabla (u - y) dX = 0. \tag{3.4}
\]

By Theorem 2.10, we have for \(D_{y_0 + \epsilon, rM} = [y > y_0 + \epsilon] \cap Z_{rM} = D_{y_0, rM} \cap \{v = y\} \)

\[
\int_{D_{y_0, rM} \cap \{v = y\}} (A(X, \nabla u) - gA(X, e)) dX \leq 0. \tag{3.5}
\]

Adding (3.4) and (3.5), we get:

\[
\int_{D_{y_0, rM} \cap \{v > y\}} (A(X, \nabla u) - A(X, \nabla v)) \nabla (u - v)^+ dX
\]

\[
+ \int_{D_{y_0, rM} \cap \{v = y\}} (A(X, \nabla u) - gA(X, e)) \nabla u dX \leq 0
\]

which can be written by taking into account (P)(i)

\[
\int_{D_{y_0, rM} \cap \{v > y\}} (A(X, \nabla u) - A(X, \nabla v)) \nabla (u - v)^+ dX + \int_{D_{y_0, rM} \cap \{v = y\} \cap \{u > y\}} A(X, \nabla u) \nabla u dX
\]

\[
+ \int_{D_{y_0, rM} \cap \{v = y\} \cap \{u = y\}} (1 - g)A(X, e) dX \leq 0.
\]

Since the three integrals in the left hand side of the above inequality are all nonnegative, we obtain by (3.1) that \(\nabla (u - v)^+ \) a.e. on \(D_{y_0, rM} \cap \{v > y\} \) and then since \((u - v)^+ = 0 \) on \(\partial D_{y_0, rM} \), we get \(u \leq v \) in \(D_{y_0, rM} \cap \{v > y\} \). This leads to \(p(x, y_0 + \epsilon) = 0 \forall x \in \pi_\alpha(D_{y_0, rM}) \).

Now for each \(\omega \in (\omega_1, \omega_2) \), there exists a unique \(t_{y_0, \epsilon}(\omega) \in (\alpha(\omega), \beta(\omega)) \) such that

\[
X_2(t_{y_0, \epsilon}(\omega), \omega) = y_0 + \epsilon \quad \text{and} \quad p(X_1(t_{y_0, \epsilon}(\omega), \omega), y_0 + \epsilon) = 0
\]

and if

\[
\tau_{y_0, \epsilon}(\omega) = \int_{t_{y_0, \epsilon}(\omega)}^{t_{y_0, \epsilon}(\omega)} |A(X(s, \omega), e)| ds
\]

we obtain \(p\tau_{y_0, \epsilon}(\omega) \leq \Phi_h(\omega) \leq \tau_{y_0, \epsilon}(\omega) \).
But since X_2 is increasing with respect to t, $X_2(t_{y_0}(\omega), \omega) = y_0$ and $X_2(t_{y_0, \epsilon}(\omega), \omega) = y_0 + \epsilon$, it follows that $t_{y_0}(\omega) < t_{y_0, \epsilon}(\omega)$ and then

$$
eq = X_2(t_{y_0, \epsilon}(\omega), \omega) - X_2(t_{y_0}(\omega), \omega) = \int_{t_{y_0}(\omega)}^{t_{y_0, \epsilon}(\omega)} \alpha^2(X(s, \omega), \epsilon) ds \geq \lambda(t_{y_0, \epsilon}(\omega) - t_{y_0}(\omega))$$

and

$$\tau_{y_0, \epsilon}(\omega) = \tau_{y_0}(\omega) + \int_{t_{y_0}(\omega)}^{t_{y_0, \epsilon}(\omega)} |A(X(s, \omega), \epsilon)| ds \leq \tau_{y_0}(\omega) + M(t_{y_0, \epsilon}(\omega) - t_{y_0}(\omega)) \leq \tau_{y_0}(\omega) + \frac{M}{\lambda}\epsilon.$$

So

$$\Phi_h(\omega) \leq \tau_{y_0}(\omega) + \frac{M}{\lambda}\epsilon < \tau_0 + \epsilon' + \frac{M}{\lambda}\epsilon = \Phi_h(\omega_0) + (1 + \frac{M}{\lambda})\epsilon \quad \forall \omega \in (\omega_1, \omega_0).$$

Hence Φ_h is u.s.c at ω_0 from the left.

Using Theorem 2.14 and arguing as above, one can prove that Φ_h is u.s.c at ω_0 from the right. Thus Φ_h is continuous at ω_0.

ii) Now we assume that $X(\beta(\omega_0), \omega_0) \in \overline{S_3} \setminus S_3$. Then one of the following situations holds:

$$\begin{cases}
 a) \exists \eta > 0 \text{ such that } \forall \omega \in (\omega_0 - \eta, \omega_0 + \eta) \quad X(\beta(\omega), \omega) \in S_3 \iff \omega \in (\omega_0, \omega_0 + \eta) \\
 b) \exists \eta > 0 \text{ such that } \forall \omega \in (\omega_0 - \eta, \omega_0 + \eta) \quad X(\beta(\omega), \omega) \in S_3 \iff \omega \in (\omega_0 - \eta, \omega_0).
\end{cases}$$

Assume for example that $a)$ holds. Then it is easy to see that

$$\Phi_h(\omega) = L_h(\beta(\omega), \omega) \quad \forall \omega \in (\omega_0, \omega_0 + \eta). \quad (3.6)$$

Arguing as in i) one can prove that Φ_h is continuous at ω_0 from the left. On the other hand we deduce from (3.6) that $u > y$ in a right neighborhood of the curve $X(\omega, \omega_0)$. Using the continuity from the left and Theorem 2.14, we have necessarily $\Phi_h(\omega_0) = L_h(\beta(\omega_0), \omega_0)$. Therefore we have now

$$\Phi_h(\omega) = L_h(\beta(\omega), \omega) \quad \forall \omega \in [\omega_0, \omega_0 + \eta)$$

which leads to the continuity from the right of Φ_h at ω_0.

We argue similarly if $b)$ occurs. \hfill \square

Remark 3.2. i) Since for each $X_0 \in \Omega \cap \partial[p > 0]$, there exists $h \in \pi_y(\Omega)$ such that $X_0 \in T_h(D_h) \cap \partial[p > 0]$ and then $X_0 = T_h \circ S_h^{-1}(\omega_0, \tau_0)$ with $\tau_0 = \Phi_h(\omega_0)$. It follows from Theorem 3.1 that the free boundary is represented near X_0 by the graph of the continuous function Φ_h. $g = g(p = 0)$.

ii) Since the free boundary is now represented locally by graphs of continuous functions, it follows by Theorem 2.5 that .

4. Uniqueness of the S_3-Connected Solutions

Definition 4.1. A solution (u, g) of (P) is a S_3-connected solution if for all connected component C of \([u > y]\) and each $h \in \pi_y(\Omega)$, we have :

$$T_h \circ S_h^{-1}(\pi_x(C_h) \times \Omega \cap S_h(D_h)) \cap S_3 \neq \emptyset, \quad \text{where} \quad C_h = (T_h \circ S_h^{-1})^{-1}(C \cap T_h(D_h)).$$
Remark 4.2. Thanks to Remark 2.8, \(C \) contains the strip of \(\Omega \) below \(S_{h,i}^1 \) and \(S_{h,i} \) on its boundary in the following sense:

\[
\forall h \in \pi_y(\Omega) \quad T_h o S_h^{-1} \left(\left(\pi_{\omega}(S_{h,i}^1) \times R \right) \cap S_h(D_h) \right) \subset C, \quad \text{where} \quad S_{h,i}^1 = (T_h o S_h^{-1})^{-1}(S_{h,i}).
\]

Theorem 4.3. Let \((u, g)\) be a solution of (P) and \(C \) a connected component of \([u > y]\) such that \(\overline{C} \cap S_3 = \emptyset \). Set for each \(h \in \pi_y(\Omega) \), \(C_h = (T_h o S_h^{-1})^{-1}(C \cap T_h(D_h)) \) and \(h_C = \sup\{y / (x, y) \in C\} \). Then we have

\[
u(x, y) = (h_C - y)^+ \chi(C) + y \quad \text{and} \quad g = 1 - \chi(C)
\]

for \((x, y) \in T_h o S_h^{-1}(\pi_{\omega}(C_h) \times R \cap S_h(D_h))\) and \(h \in \pi_y(\Omega) \).

Proof. Since \(\pm \chi(C)(u - y) \) are test functions for (P), we have:

\[
\int_C (A(X, \nabla u) - gA(X, e)) \cdot \nabla(u - y) dX = 0.
\] (4.1)

By Theorem 2.12, we have:

\[
\int_C (A(X, \nabla u) - gA(X, e)) \cdot dX \leq 0.
\] (4.2)

Adding (4.1) and (4.2), we obtain

\[
\int_C (A(X, \nabla u) - gA(X, e)) \cdot \nabla udX \leq 0
\]

which can be written

\[
\int_{C \cap [u > y]} A(X, \nabla u) \cdot \nabla u dX + \int_{C \cap [u = y] \cap \emptyset} (1 - g)A(X, e) \cdot dX \leq 0.
\]

It follows then that \(\nabla u = 0 \) a.e. in \(C \) and then \(u \) is equal to a some positive constant \(k \) in \(C \). But we can easily verify that \(k = h_C \).

Using Theorem 2.7 we deduce that \(u = (h_C - y)^+ \chi(C) + y \) in \(T_h o S_h^{-1}(\pi_{\omega}(C_h) \times R \cap S_h(D_h)) \). Since \(\Phi_h \) is continuous, we deduce by Theorem 1.15 that \(g = 1 - \chi(C) \) in \(T_h o S_h^{-1}(\pi_{\omega}(C_h) \times R \cap S_h(D_h)) \). \(\Box \)

Definition 4.4. We call a pool in \(\Omega \) a pair \((u, g)\) of functions defined in \(\Omega \) by:

\[
u(x, y) = (h_C - y)^+ \chi(C) + y \quad \text{and} \quad g(x, y) = 1 - \chi(C)(x, y)
\]

for \((x, y) \in Z = T_h o S_h^{-1}(\pi_{\omega}(C_h) \times R \cap S_h(D_h))\),

where \(C = T_h o S_h^{-1}(C_h) \) is a sub-domain of \(\Omega \) and \(h = \max\{y / (x, y) \in C\} \).

Theorem 4.5. Each solution \((u, g)\) of (P) can be written as the sum of a \(S_3 \)-connected solution and pools.

Proof. See [CaL] or [Ly2]. \(\Box \)

In order to prove the uniqueness of the \(S_3 \)-Connected Solution we shall assume that \(\Omega \) is covered by a finite number of sets \(T_h(D_h) \) that is

\[
\exists h_1, \ldots, h_n \in \pi_y(\Omega) \quad \text{such that} \quad \Omega = \bigcup_{k=1}^{k=n} T_{h_k}(D_{h_k}). \quad (4.3)
\]
Then we can state our uniqueness theorem

Theorem 4.6. Under assumption (4.3), the S_3-connected solution is unique.

The proof of Theorem 4.6 requires three lemmas.

Lemma 4.7. Let (u_1, g_1) and (u_2, g_2) be two solutions of (P). Then we have

\[
\int_{\Omega} \left((A(X, \nabla u_i) - A(X, \nabla u_m)) - (g_i - g_M)A(X, e) \right) \nabla \zeta dX = 0 \quad i = 1, 2 \quad \forall \zeta \in W^{1,2}(\Omega),
\]

where $u_m = \min(u_1, u_2)$ and $g_M = \max(g_1, g_2)$.

To prove Lemma 4.7 we need the following Lemma:

Lemma 4.8. Let (u_1, g_1) and (u_2, g_2) be two solutions of (P) and $\Phi_{h_k}^i \, (i = 1, 2 \text{ and } k = 1, ..., n)$ be the corresponding free boundary functions. Then we have for $i = 1, 2$ and $\zeta \in W^{1,2}(\Omega) \cap C^0(\Omega)$

\[
\int_{\Omega} \left((A(X, \nabla u_i) - A(X, \nabla u_m)) - (g_i - g_M)A(X, e) \right) \nabla \zeta dX \\
\leq \sum_{k=1}^{k=n} \int_{D_{h_k}} \left(-Y_{h_k} \alpha S_{h_k}^{-1}(\omega, \Phi_{h_k}^i(\omega)) \zeta \right) d\omega,
\]

where $D_{h_k} = \{ \omega \in \pi_\omega(S_{h_k}(D_{h_k}))/\Phi_{h_k}^0(\omega) = \min(\Phi_{h_k}^1(\omega), \Phi_{h_k}^2(\omega)) < \Phi_{h_k}^i(\omega) \}$.

Proof. First thanks to (4.3) there exits a partition of unity $(\theta_k)_{k=1}^{k=n}$ corresponding to the open covering $(T_{h_k}(D_{h_k}))_{k=1}^{k=n}$ of Ω that is

\[
\theta_k \in D(T_{h_k}(D_{h_k})) \quad \forall k = 1, ..., n \\
0 \leq \theta_k \leq 1 \quad \text{in} \quad \Omega \quad \forall k = 1, ..., n \\
\sum_{k=1}^{k=n} \theta_k = 1 \quad \text{in} \quad \Omega. \tag{4.4}
\]

Then we have by taking into account (4.4)

\[
\int_{\Omega} \left((A(X, \nabla u_i) - A(X, \nabla u_m)) - (g_i - g_M)A(X, e) \right) \nabla \zeta dX \\
= \sum_{k=1}^{k=n} \int_{T_{h_k}(D_{h_k})} \left((A(X, \nabla u_i) - A(X, \nabla u_m)) - (g_i - g_M)A(X, e) \right) \nabla \zeta_k dX \tag{4.5}
\]

where $\zeta_k = \theta_k \zeta$.

Now let $\epsilon > 0$ and $\xi_k = \min\left(\zeta_k, \frac{(u_1 - u_2)^+}{\epsilon}\right)$. Clearly $\pm \xi_k$ are test functions for (P) and then we have

\[
\int_{\Omega} \left((A(X, \nabla u_i) - A(X, \nabla u_2)) - (g_1 - g_M)A(X, e) \right) \nabla \xi_k dX = 0. \tag{4.6}
\]

Since we integrate only on the set $\{u_1 > u_2\}$, where $u_1 = u_m$, (4.6) becomes

\[
\int_{\Omega} \left((A(X, \nabla u_i) - A(X, \nabla u_m)) - (g_1 - g_M)A(X, e) \right) \nabla \xi_k dX = 0
\]
which can be written

\[
\int_{\Omega \cap \{(u_1 - u_2)^+ > \varepsilon \eta \}} ((A(X, \nabla u_1) - A(X, \nabla u_m)). \nabla \eta \cdot dX - \int_\Omega (g_1 - g M) A(X, \varepsilon) \cdot \nabla \eta \cdot dX \\
\leq - \int_\Omega (g_1 - g M) A(X, \varepsilon) \cdot \nabla (\eta - \frac{u_1 - u_2}{\varepsilon})^+ dX \\
= - \int_{T_{h_k} (D_{h_k})} (g_1 - g M) A(X, \varepsilon) \cdot \nabla (\eta - \frac{u_1 - u_2}{\varepsilon})^+ dX = I^k_\varepsilon.
\]

Using the C^1-diffeomorphisms T_{h_k} and S_{h_k} we obtain

\[
I^k_\varepsilon = - \int_{S_{h_k} (D_{h_k})} (g_1 oT_{h_k} oS_{h_k}^{-1} - g M o T_{h_k} oS_{h_k}^{-1}) (\omega, \tau) \\
\cdot (-Y_{h_k} o S_{h_k}^{-1} (\omega, \tau) \frac{\partial}{\partial \tau} (\eta - \frac{u_1 - u_2}{\varepsilon})^+ oT_{h_k} o S_{h_k}^{-1}) d\omega d\tau \\
= \int_{[\pi_1 o T_{h_k} o S_{h_k}^{-1} > 0 = \phi_{\varepsilon h_k} (\omega)]} (-Y_{h_k} o S_{h_k}^{-1} (\omega, \tau) \frac{\partial}{\partial \tau} (\eta - \frac{p_1}{\varepsilon})^+ o T_{h_k} o S_{h_k}^{-1}) d\omega d\tau \\
= \int_{[\tau < \phi_{\varepsilon h_k} (\omega) \tau > p_1 \phi_{\varepsilon h_k} (\omega)]} (-Y_{h_k} o S_{h_k}^{-1} (\omega, \tau) \frac{\partial}{\partial \tau} (\eta - \frac{p_1}{\varepsilon})^+ o T_{h_k} o S_{h_k}^{-1}) d\omega d\tau \\
= \int_{\Phi_{h_k}^1 (\omega)} \phi_{h_k}^1 (\omega) (-Y_{h_k} o S_{h_k}^{-1} (\omega, \tau) \frac{\partial}{\partial \tau} (\eta - \frac{p_1}{\varepsilon})^+ o T_{h_k} o S_{h_k}^{-1}) d\omega d\tau.
\]

By the second mean value theorem there exists $\Phi_{h_k}^1 (\omega) \in [\phi_{\varepsilon h_k}^1 (\omega), \phi_{h_k}^1 (\omega)]$ such that

\[
I^k_\varepsilon = \int_{\Phi_{h_k}^1 (\omega)} (-Y_{h_k} o S_{h_k}^{-1} (\omega, \phi_{h_k}^1 (\omega))) \frac{\partial}{\partial \tau} (\eta - \frac{p_1}{\varepsilon})^+ o T_{h_k} o S_{h_k}^{-1}) d\omega d\tau \\
\leq \int_{\Phi_{h_k}^1 (\omega)} (-Y_{h_k} o S_{h_k}^{-1} (\omega, \phi_{h_k}^1 (\omega))) \eta o T_{h_k} o S_{h_k}^{-1} (\omega, \phi_{h_k}^1 (\omega)) d\omega.
\]

It follows that

\[
\int_{\Omega \cap \{(u_1 - u_2)^+ > \varepsilon \eta \}} ((A(X, \nabla u_1) - A(X, \nabla u_m)). \nabla \eta \cdot dX - \int_\Omega (g_1 - g M) A(X, \varepsilon) \cdot \nabla \eta \cdot dX \\
\leq \int_{\Phi_{h_k}^1 (\omega)} (-Y_{h_k} o S_{h_k}^{-1} (\omega, \phi_{h_k}^1 (\omega))) \eta o T_{h_k} o S_{h_k}^{-1} (\omega, \phi_{h_k}^1 (\omega)) d\omega.
\]

Letting ε go to 0, we get

\[
\int_\Omega ((A(X, \nabla u_1) - A(X, \nabla u_m)). \nabla \eta - (g_1 - g M) A(X, \varepsilon) \cdot \nabla \eta \cdot dX \\
\leq \int_{\Phi_{h_k}^1 (\omega)} (-Y_{h_k} o S_{h_k}^{-1} (\omega, \phi_{h_k}^1 (\omega))) \eta o T_{h_k} o S_{h_k}^{-1} (\omega, \phi_{h_k}^1 (\omega)) d\omega.
\]

Combining (4.5) and (4.7) the lemma follows.

Proof of Lemma 4.7. Let $\zeta \in C^2(\Omega)$, $\zeta \geq 0$. For $\delta > 0$ we set $\alpha_\delta (\omega, \tau) = \left(1 - \frac{d((\omega, \tau), A_0)}{\delta}\right)^+$ where
Let Ω be a domain of \mathbb{R}^d, $\Gamma_0 \subset \partial \Omega_0$ of class $C^{1,\alpha}$ and let $u_1, u_2 \in W^{1,q}_{\text{loc}}(\Omega_0)$ such that:

(i) $\text{div}(A(X, \nabla u_2)) = \text{div}(A(X, \nabla u_2)) = 0$ in $\mathcal{D}'(\Omega_0)$
(ii) $u_1 \leq u_2$ in Ω
(iii) $u_1 = u_2$ on Γ_0, $u_1, u_2 \in C^1(\Omega_0 \cup \Gamma_0)$
(iv) $A(X, \nabla u_1) \cdot \nu = A(X, \nabla u_2) \cdot \nu$ on Γ_0
(v) $\nabla u_1(X) \neq 0$ for $X \in \Gamma_0$, or $\nabla u_2(X) \neq 0$ for $X \in \Gamma_0$.

Then $u_1 = u_2$ in Ω.

Proof. See [ChaL]

Proof of Theorem 4.6. When $A(X, \xi) = a(X)\xi$ and $q = 2$ one can argue as in [Ly1]. For the general case we use Lemma 4.9.
Let \((u_1, g_1), (u_2, g_2)\) be two solutions of \((P)\). By Lemma 4.1 one can see that \((u_m, g_M)\) is also a solution of \((P)\). Let \(C_{m,i}\) be the connected component of the set \([u_m > y]\) that contains \(S_{3,i}\) on its boundary. From Lemma 4.1 we deduce easily that \(i)\) and \(ii)\) are satisfied for \(\Gamma_0 = C_{m,i}\) and \(\Gamma_0 = S_{3,i}\). \(ii)\) is obviously satisfied and the first part of \(iii)\) is true since \(u_1 = u_2 = \phi + y\) on \(S_3\). The second part of \(iii)\) is also true (see [Li]). So if \(v\) is satisfied we will get \(u_1 = u_m\) in \(C_{m,i}\). Assume that \(v\) is not true, then \(\exists x_1, x_m \in \Gamma_0\) such that \(\nabla u_j(x_j) = 0, j = 1, m\). We distinguish two cases:

If \(\nabla u_1 \neq 0 \) on \(\Gamma_0\) or \(\nabla u_m \neq 0 \) on \(\Gamma_0\) then by \(iii)\) \(\exists \Gamma' \subset \Gamma_0\) such that \(\nabla u_1 \neq 0 \) on \(\Gamma'\) or \(\nabla u_m \neq 0 \) on \(\Gamma'\).

From the Lemma we conclude that \(u_1 = u_m\) in \(C_{m,i}\).

If \(\nabla u_1 = 0 \) on \(\Gamma_0\) and \(\nabla u_m = 0 \) on \(\Gamma_0\), then \(u_1\) and \(u_m\) are both constant along \(\Gamma_0\). Since \(u_1 = u_m\) on \(S_3\), it follows that \(u_1 = u_m = h_i\) on \(\Gamma_0\) for some constant \(h_i\). Therefore one can extend \(u_1\) and \(u_m\) into \(B \setminus \Omega\) by \(h_i\) where \(B\) is a ball centered at \(S_{3,i} = \Gamma_0\) in such a way that \(u_j \in C^1(C_{m,i} \cup B)\) and \(\text{div}(A(X, \nabla u_j)) = 0\) in \(\mathcal{D}'(C_{m,i} \cup B)\). So \(\nabla u_j\) has non-isolated zeros and then (see [AS]) \(u_j = h_i\) in \(C_{m,i}\) (j = 1, m). Then \(u_1 = u_m\) in \(C_{m,i}\).

Now \(C_{m,i}\) is a nonempty open set of the domain \(C_{1,i}\). Moreover it is easy to show that \(C_{m,i}\) is also closed in \(C_{1,i}\). Thus \(C_1 = C_{m,i}\) and \(u_1 = u_m\) in \(C_1\). In the same way we prove that \(u_2 = u_m\) in \(C_2\). We conclude that \(u_1 = u_2\) in \(C_1\), \(C_2\), for all \(i = 1, \ldots, N\). This means that \(u_1 = u_2\) in \([u_1 > y] = [u_2 > y]\) which leads to \(u_1 = u_2\) in \(\Omega\). Finally we deduce from Theorem 2.15 that \(g_1 = g_2\) in \(\Omega\).

\[\Box\]

Acknowledgments
We would like to thank KPUPM for its support. The second author is grateful to professor M. Chipot for fruitful discussions they have had few years ago.

References

