
 
DHAHRAN 31261 ● SAUDI ARABIA ● www.kfupm.edu.sa/math/ ● E-mail: c-math@kfupm.edu.sa 

 
θ  
 

King Fahd University of Petroleum & Minerals 
 
 

DEPARTMENT OF MATHEMATICAL SCIENCES 
 
 

 
 
 
 
 

Technical Report Series 
 
 

TR 391 
 

June 2008 
 
 
 
 
 
 
 

θ -SOBRIETY VIA NETS 
 
 

Miguel Caldas, Erdal Ekici, Saeid Jafari and Raja M. Latifil 
 



θ-SOBRIETY VIA NETS

Miguel Caldas, Saeid Jafari and Raja M Latif

Abstract

P. Sünderhauf [11] studied the important notion of sobriety in terms of nets. In this
paper, by the same token, we present and study the notion of θ-sobriety by utilizing
the notion of θ-open sets.
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1 Introduction

In 1943, Fomin [5] (see, also [6]) introduced the notion of θ-continuity. The notions of θ-

open subsets, θ-closed subsets and θ-closure were introduced by Veličko [12] for the purpose

of studying the important class of H-closed spaces in terms of arbitrary filterbases. Dickman

and Porter [2], [3], Joseph [8] continued the work of Veličko. Recently Noiri and Jafari [10]

have also obtained several new and interesting results related to these sets.

In what follows (X, τ) and (Y, σ) (or X and Y ) denote topological spaces. Let A be

a subset of X. We denote the interior and the closure of a set A by Int(A) and Cl(A),

respectively. A point x ∈ X is called a θ-cluster point of A if A ∩ Cl(U) 6= ∅ for every open
set U of X containing x. The set of all θ-cluster points of A is called the θ-closure of A. A

subset A is called θ-closed if A and its θ-closure coincide. The complement of a θ-closed set

is called θ-open. It is shown in [9] that the collection of all θ-open sets in a space X forms a

topology denoted by τθ. A topological space (X, τ) is called θ-compact [7] if every cover of

the space by θ-open sets has a finite subcover. We denote the filter of θ-open neighbourhoods

[1] of some point x in X by Ωθ(x).
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Definition 1 A function f : (X, τ) → (Y, σ) is called θ-continuous if for each x ∈ X and

each open set V in Y containing f(x), there exists an open set U in X containing x such

that f(Cl(U)) ⊂ Cl(V ).

Definition 2 Two topological spaces (X, τ) and (Y, σ) are θ-homeomorphic [12] if there

exists a one-to-one and onto function f : (X, τ) → (Y, σ) such that f and f−1 are both

θ-continuous.

2 θ-Sobriety

Definition 3 A space (X, τ) is said to be θ-sober if it is θ-homeomorphic with the space of

points of its frame of θ-open sets.

Recall that the θ-saturated set and the θ-kernel of a set A [1] are the same, i.e. ∩{O ∈
τθ | A ⊂ O}.

θ-sobriety implies the existence of LUB (= least upper bound) of subsets which are

directed with respect to the order of θ-specialization, i.e. if (X, τ) is a topological space,

then the order of θ-specialization of X is defined by x ≤r y ⇔ x ∈ Clθ({y}).

Theorem 2.1 Let X be a θ-sober space for which finite intersection of θ-compact θ-saturated

subsets are θ-compact.

(1) Every cover of a θ-compact set by θ-open sets contains a finite subcover.

(2) If the intersection of θ-compact θ-saturated sets is contained in a θ-open set, then the

same is true for an intersection of finitely many of them.

Now we offer a new notion called θ-observative net by which we characterize θ-sobriety.

Definition 4 A net (xi)i ∈ I in a space X is θ-observative if for all i ∈ I and for all U ∈
τθ , we have that xi ∈ U implies that the net is eventually in the set U .

Recall that a filter base F is called θ-convergent [13] to a point x in X if for any open

set U containing x there exists B ∈ F such that B ∈ Cl(U).
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Definition 5 A θ-observative net (xi)i ∈ I strongly θ-converges to a point x in X if it θ-

converges to x with respect to τθ, and also if it satisfies that x is an element of every θ-open

set which eventually contains the net. We denote it by xi
θ−→ x.

Lemma 2.2 If (xi)i ∈ I is a θ-observative net in a space (X, τ), then xi
θ−→ x if and only

if xi −→ x with respect to τθ.

Proof. Let xi
θ−→ x and x ∈ A for some θ-closed set A. If the net is not eventually

contained in A, then it is frequently in the θ-open set X − A. By hypothesis, the net is

θ-observative and therefore [x]≥i ⊆ X −A for some tail. Hence x ∈ X −A as a consequence

of strong θ-convergence. But this is a contradiction and hence the claim.

Now suppose that xi −→ x with respect to the τθ. Then a θ-open set which eventually

contains the net but does not contain x establishes a θ-neighbourhood X−U of x which has

been forgotten by the net. Therefore strong θ-convergence follows readily.

Here we establish the θ-derived filter F(x)I for a net (xi)i ∈ I as follows:

F(x)I= {U ∈ τθ | ∃i ∈ I such that [x]≥i ⊆ U}.

Definition 6 A filter F ⊆ τ is called θ-completely prime if for every O ∈ F and for any

family of θ-open sets (Oi)i∈I such that O ⊆
S
I Oi, then Ok ∈ F for some k ∈ I.

Theorem 2.3 A filter derived from a θ-observative net is θ-completely prime.

Proof. Let the net (xi)i ∈ I be θ-observative and [x]≥i ⊆
S
j∈J Uj for some collection of

θ-open sets and some index i ∈ I. Hence xi ∈
S
j∈J Uj. Therefore there is some j0 ∈ J with

xj ∈ Uj0 . Since the net is θ-observative, then it follows that some tail is contained in Uj0 .

Thus the set is a filter.

Proposition 2.4 If (xi)i ∈ I is a θ-observative net, then xi
θ−→ x if and only if F(x)I=

Ωθ(x).
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Proof. Obvious; since (xi)i ∈ I strongly θ-converges to x if and only if it is true that

x ∈ U is equivalent to the existence of some i ∈ I with [x]≥i ⊆ U .

But how can we deal with the situation where a space is θ-sober if all its θ-observative

nets strongly θ-converge?

In such situation, we need the following construction:

Assign to each θ-completely prime filter F a θ-observative net such that F(x)I= F .

Theorem 2.5 Let F be a filter of θ-open subsets of the space (X, τ). Then F is θ-completely
prime if and only if for all U ∈ F , there exists x ∈ U with the property that x ∈ G implies

G ∈ F for every G ∈ τθ.

Proof. Suppose that F has this property and
S
j∈J Uj ∈ F . Take x ∈ S

j∈J Uj with

x ∈ G ∈ τθ ⇒ G ∈ F . Clearly, x ∈ Uj0 for some j0 ∈ J . Therefore Uj0 ∈ F . This means
that the filter F is θ-completely prime.

Conversely. assume that U ∈ F has not this property. It follows that for each x ∈ U , there

is Gx ∈ τθ with Gx /∈ F . Put Ux := Gx ∩ U . Now we have Ux /∈ F for all x ∈ U and

U =
S
x∈U Ux ∈ F . But this is against our hypothesis that F is θ-completely prime and

hence the claim.

Now we give a new appropriate construction. Let F be a θ-completely prime filter of

θ-open sets on (X, τ). Take F with reserved set inclusion as order to be the index set of our
net. If U ∈ F , pick xU ∈ U with the property that xU ∈ G implies G ∈ F . This is possible
by the previous Theorem. A net established in this way is called a θ-derived net from the

filter.

Lemma 2.6 A θ-derived net from a θ-completely prime filter is θ-observative.

Proof. Let U ∈ F and xU ∈ G ∈ τθ. Then G ∈ F by choice of xU . If V ⊆ G, then

xV ∈ V ⊆ G. Hence [x]≥i ⊆ G. Therefore the net is θ-observative.
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Theorem 2.7 Every θ-completely prime filter equals the θ-derived filter of any of its θ-

derived nets.

Proof. Clearly, [x]≥i ⊆ U for U ∈ F . Thus U ∈ F =⇒U ∈ F(x)I. Conversely,

U ∈ F(x)I⇒[x]≥i ⊆ U for some G ∈ F . Therefore, xU ∈ U which implies that U ∈ F by

choice of xG.

Theorem 2.8 A topological space is θ-sober if and only if every θ-observative net strongly

θ-converges to a unique point.

Proof. Obvious.
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