

King Fahd University of Petroleum & Minerals

DEPARTMENT OF MATHEMATICAL SCIENCES

Technical Report Series

TR 391

June 2008

θ -sobriety via nets

Miguel Caldas, Erdal Ekici, Saeid Jafari and Raja M. Latifil

DHAHRAN 31261 • SAUDI ARABIA • www.kfupm.edu.sa/math/ • E-mail: c-math@kfupm.edu.sa

θ -SOBRIETY VIA NETS

Miguel Caldas, Saeid Jafari and Raja M Latif

Abstract

P. Sünderhauf [11] studied the important notion of sobriety in terms of nets. In this paper, by the same token, we present and study the notion of θ -sobriety by utilizing the notion of θ -open sets.

2000 Mathematics Subject Classification: 54B05, 54C08; Secondary: 54D05. **Key words and phrases:** θ -open, θ -closed, θ -compact space, θ -sobriety.

1 Introduction

In 1943, Fomin [5] (see, also [6]) introduced the notion of θ -continuity. The notions of θ open subsets, θ -closed subsets and θ -closure were introduced by Veličko [12] for the purpose
of studying the important class of *H*-closed spaces in terms of arbitrary filterbases. Dickman
and Porter [2], [3], Joseph [8] continued the work of Veličko. Recently Noiri and Jafari [10]
have also obtained several new and interesting results related to these sets.

In what follows (X, τ) and (Y, σ) (or X and Y) denote topological spaces. Let A be a subset of X. We denote the interior and the closure of a set A by Int(A) and Cl(A), respectively. A point $x \in X$ is called a θ -cluster point of A if $A \cap Cl(U) \neq \emptyset$ for every open set U of X containing x. The set of all θ -cluster points of A is called the θ -closure of A. A subset A is called θ -closed if A and its θ -closure coincide. The complement of a θ -closed set is called θ -open. It is shown in [9] that the collection of all θ -open sets in a space X forms a topology denoted by τ_{θ} . A topological space (X, τ) is called θ -compact [7] if every cover of the space by θ -open sets has a finite subcover. We denote the filter of θ -open neighbourhoods [1] of some point x in X by $\Omega_{\theta}(x)$. **Definition 1** A function $f : (X, \tau) \to (Y, \sigma)$ is called θ -continuous if for each $x \in X$ and each open set V in Y containing f(x), there exists an open set U in X containing x such that $f(Cl(U)) \subset Cl(V)$.

Definition 2 Two topological spaces (X, τ) and (Y, σ) are θ -homeomorphic [12] if there exists a one-to-one and onto function $f : (X, \tau) \to (Y, \sigma)$ such that f and f^{-1} are both θ -continuous.

2 θ -Sobriety

Definition 3 A space (X, τ) is said to be θ -sober if it is θ -homeomorphic with the space of points of its frame of θ -open sets.

Recall that the θ -saturated set and the θ -kernel of a set A [1] are the same, i.e. $\cap \{O \in \tau_{\theta} \mid A \subset O\}$.

 θ -sobriety implies the existence of LUB (= least upper bound) of subsets which are directed with respect to the order of θ -specialization, i.e. if (X, τ) is a topological space, then the order of θ -specialization of X is defined by $x \leq_r y \Leftrightarrow x \in Cl_{\theta}(\{y\})$.

Theorem 2.1 Let X be a θ -sober space for which finite intersection of θ -compact θ -saturated subsets are θ -compact.

(1) Every cover of a θ -compact set by θ -open sets contains a finite subcover.

(2) If the intersection of θ -compact θ -saturated sets is contained in a θ -open set, then the same is true for an intersection of finitely many of them.

Now we offer a new notion called θ -observative net by which we characterize θ -sobriety.

Definition 4 A net $(x_i)_i \in I$ in a space X is θ -observative if for all $i \in I$ and for all $U \in \tau_{\theta}$, we have that $x_i \in U$ implies that the net is eventually in the set U.

Recall that a filter base \mathcal{F} is called θ -convergent [13] to a point x in X if for any open set U containing x there exists $B \in \mathcal{F}$ such that $B \in Cl(U)$. **Definition 5** A θ -observative net $(x_i)_i \in I$ strongly θ -converges to a point x in X if it θ converges to x with respect to τ_{θ} , and also if it satisfies that x is an element of every θ -open
set which eventually contains the net. We denote it by $x_i \xrightarrow{\theta} x$.

Lemma 2.2 If $(x_i)_i \in I$ is a θ -observative net in a space (X, τ) , then $x_i \xrightarrow{\theta} x$ if and only if $x_i \longrightarrow x$ with respect to τ_{θ} .

Proof. Let $x_i \xrightarrow{\theta} x$ and $x \in A$ for some θ -closed set A. If the net is not eventually contained in A, then it is frequently in the θ -open set X - A. By hypothesis, the net is θ -observative and therefore $[x]_{\geq i} \subseteq X - A$ for some tail. Hence $x \in X - A$ as a consequence of strong θ -convergence. But this is a contradiction and hence the claim.

Now suppose that $x_i \longrightarrow x$ with respect to the τ_{θ} . Then a θ -open set which eventually contains the net but does not contain x establishes a θ -neighbourhood X - U of x which has been forgotten by the net. Therefore strong θ -convergence follows readily.

Here we establish the θ -derived filter $\mathcal{F}(x)\mathcal{I}$ for a net $(x_i)_i \in I$ as follows:

 $\mathcal{F}(x)\mathcal{I} = \{ U \in \tau_{\theta} \mid \exists i \in I \text{ such that } [x]_{>i} \subseteq U \}.$

Definition 6 A filter $\mathcal{F} \subseteq \tau$ is called θ -completely prime if for every $O \in \mathcal{F}$ and for any family of θ -open sets $(O_i)_{i \in I}$ such that $O \subseteq \bigcup_I O_i$, then $O_k \in \mathcal{F}$ for some $k \in I$.

Theorem 2.3 A filter derived from a θ -observative net is θ -completely prime.

Proof. Let the net $(x_i)_i \in I$ be θ -observative and $[x]_{\geq i} \subseteq \bigcup_{j \in J} U_j$ for some collection of θ -open sets and some index $i \in I$. Hence $x_i \in \bigcup_{j \in J} U_j$. Therefore there is some $j_0 \in J$ with $x_j \in U_{j_0}$. Since the net is θ -observative, then it follows that some tail is contained in U_{j_0} . Thus the set is a filter.

Proposition 2.4 If $(x_i)_i \in I$ is a θ -observative net, then $x_i \xrightarrow{\theta} x$ if and only if $\mathcal{F}(x)\mathcal{I} = \Omega_{\theta}(x)$.

Proof. Obvious; since $(x_i)_i \in I$ strongly θ -converges to x if and only if it is true that $x \in U$ is equivalent to the existence of some $i \in I$ with $[x]_{>i} \subseteq U$.

But how can we deal with the situation where a space is θ -sober if all its θ -observative nets strongly θ -converge?

In such situation, we need the following construction:

Assign to each θ -completely prime filter \mathcal{F} a θ -observative net such that $\mathcal{F}(x)\mathcal{I} = \mathcal{F}$.

Theorem 2.5 Let \mathcal{F} be a filter of θ -open subsets of the space (X, τ) . Then \mathcal{F} is θ -completely prime if and only if for all $U \in \mathcal{F}$, there exists $x \in U$ with the property that $x \in G$ implies $G \in \mathcal{F}$ for every $G \in \tau_{\theta}$.

Proof. Suppose that \mathcal{F} has this property and $\bigcup_{j \in J} U_j \in \mathcal{F}$. Take $x \in \bigcup_{j \in J} U_j$ with $x \in G \in \tau_{\theta} \Rightarrow G \in \mathcal{F}$. Clearly, $x \in U_{j_0}$ for some $j_0 \in J$. Therefore $U_{j_0} \in \mathcal{F}$. This means that the filter \mathcal{F} is θ -completely prime.

Conversely. assume that $U \in \mathcal{F}$ has not this property. It follows that for each $x \in U$, there is $G_x \in \tau_{\theta}$ with $G_x \notin \mathcal{F}$. Put $U_x := G_x \cap U$. Now we have $U_x \notin \mathcal{F}$ for all $x \in U$ and $U = \bigcup_{x \in U} U_x \in \mathcal{F}$. But this is against our hypothesis that \mathcal{F} is θ -completely prime and hence the claim.

Now we give a new appropriate construction. Let \mathcal{F} be a θ -completely prime filter of θ -open sets on (X, τ) . Take \mathcal{F} with reserved set inclusion as order to be the index set of our net. If $U \in \mathcal{F}$, pick $x_U \in U$ with the property that $x_U \in G$ implies $G \in \mathcal{F}$. This is possible by the previous Theorem. A net established in this way is called a θ -derived net from the filter.

Lemma 2.6 A θ -derived net from a θ -completely prime filter is θ -observative.

Proof. Let $U \in \mathcal{F}$ and $x_U \in G \in \tau_{\theta}$. Then $G \in \mathcal{F}$ by choice of x_U . If $V \subseteq G$, then $x_V \in V \subseteq G$. Hence $[x]_{\geq i} \subseteq G$. Therefore the net is θ -observative.

Theorem 2.7 Every θ -completely prime filter equals the θ -derived filter of any of its θ -derived nets.

Proof. Clearly, $[x]_{\geq i} \subseteq U$ for $U \in \mathcal{F}$. Thus $U \in \mathcal{F} \Longrightarrow U \in \mathcal{F}(x)\mathcal{I}$. Conversely, $U \in \mathcal{F}(x)\mathcal{I} \Longrightarrow [x]_{\geq i} \subseteq U$ for some $G \in \mathcal{F}$. Therefore, $x_U \in U$ which implies that $U \in \mathcal{F}$ by choice of x_G .

Theorem 2.8 A topological space is θ -sober if and only if every θ -observative net strongly θ -converges to a unique point.

Proof. Obvious.

Acknowledgement

The third author is highly and greatly indebted to the King Fahd University of Petroleum and Minerals, for providing necessary research facilities during the preparation of this paper.

References

- M. Caldas, S. Jafari and T. Noiri, Weak separation axioms via Veličko's θ-open sets and θ-closure operator, Seminário Brasileiro de Análise, Institute de Matemática Universidade Federal Fluminense, Niterói 56 (2002), 657-663.
- [2] R. F. Dickman, Jr. and J. R. Porter, θ-closed subsets of Hausdorff spaces, Pacific J. Math. 59 (1975), 407-415.
- [3] R. F. Dickman, Jr. and J. R. Porter, θ-perfect and θ-absolutely closed functions, *Ilinois J. Math.* **21** (1977), 42-60.
- [4] J. Dontchev and H. Maki, Groups of θ -generalozed homeomorphisms and the digital line, *Topology and its Applications*, **95** (1999), 113-128.
- [5] S. Fomin, Extensions of topological spaces, Ann. of Math. 44 (1943), 471-480.
- [6] S. Iliadis and S. Fomin, The method of centred systems in the theory of topological spaces, Uspekhi Mat. Nauk. 21 (1996), 47-76 (=Russian Math. Surveys, 21 (1966), 37-62).
- [7] S. Jafari, Some properties of quasi θ -continuous functions, Far East J. Math. Sci. **6**(5)(1998), 689-696.

- [8] J. E. Joseph, θ -closure and θ -subclosed graphs, Math., Chronicle 8 (1979), 99-117.
- [9] P. E. Long and L. L. Herrington, The τ_{θ} -topology and faintly continuous functions, *Kyungpook Math. J.* **22** (1982), 7-14.
- [10] T. Noiri and S. Jafari, Properties of (θ, s) -continuous functions, Topology and its Applications 123 (2002), 167-179.
- [11] P. Sünderhauf, Sobriety in terms of nets, Appl. Categ. Structures 8(4)(2000), 649-653.
- [12] N. V. Veličko, H-closed topological spaces, Mat. Sb., 70 (1966), 98-112; English transl.
 (2), in Amer. Math. Soc. Transl., 78(1968), 102-118.
- [13] N. V. Veličko, On extension of mappings of topological spaces, Amer. Math. Soc. trans., (2)92 (1970), 41-47.

Addresses :

Miguel Caldas

Departamento de Matematica Aplicada, Universidade Federal Fluminense, Rua Mario Santos Braga, s/n 24020-140, Niteroi, RJ BRASIL.

e-mail: gmamccs@vm.uff.br

Saeid Jafari

College of Vestsjaelland South, Herrestaede 11, 4200 Slagelse, DENMARK.

E-mail: jafari@stofanet.dk

Raja Mohammad Latif

Department of Mathematics and Statistics King Fahd University of Petroleum and Minerals Dhahran 31261 SAUDI ARABIA.

E-mail: raja@kfupm.edu.sa