Problem 1: Consider the function \(f(x) = \frac{x-1}{x^2 + x - 2} \).

(1) If it exists, find the limit. If it does not exist, show why. Use the symbols \(\infty \) or \(-\infty\) as appropriate.

(a) \(\lim_{x \to 1} f(x) \)

(b) \(\lim_{x \to 2} f(x) \)

(c) \(\lim_{x \to \infty} f(x) \)

(2) Find all points of discontinuity of \(f(x) \) and state the type of each one.

Problem 2:

(1) Use the definition of the derivative to find \(f'(0) \) where \(f(x) = \sqrt{1-x} \).

(2) Find all values of \(C \) which will make the following function continuous.

\[
f(x) = \begin{cases}
2C - 2x & \text{if } x \leq 2, \\
x^2 + C & \text{if } x > 2.
\end{cases}
\]

(3) Find the slope of the line tangent to the graph of \(f(x) = \frac{1-2x^2}{\sqrt{x}} + 3\pi^2 \) at \(x = 4 \). (Do not use the limit)
Problem 1: Consider the function \(f(x) = \frac{x^2 + 2x}{x^2 - x - 6} \).

(1) If it exists, find the limit. If it does not exist, show why. Use the symbols \(\infty \) or \(-\infty \) as appropriate.

 (d) \(\lim_{x \to 0} f(x) \)

 (e) \(\lim_{x \to 2} f(x) \)

 (f) \(\lim_{x \to \infty} f(x) \)

(2) Find all points of discontinuity of \(f(x) \) and state the type of each one.

Problem 2:

(1) Use the definition of the derivative to find \(f'(3) \) where \(f(x) = \frac{1}{x-1} \).

(2) Find all values of \(C \) which will make the following function continuous.

\[
f(x) =
\begin{cases}
 2x - C + 1 & \text{if } x \leq 2, \\
 x^2 + 3C & \text{if } x > 2.
\end{cases}
\]

(3) Find the slope of the line tangent to the graph of \(f(x) = \sqrt{x} \left[x - 2\sqrt{x} \right] + 2\pi^5 \) at \(x = 4 \). (Do not use the limit)
Problem 1: Consider the function \(f(x) = \frac{2x - x^2}{x^2 + x - 6} \).

(1) If it exists, find the limit. If it does not exist, show why. Use the symbols \(\infty \) or \(-\infty \) as appropriate.

 (g) \(\lim_{x \to 0} f(x) \)

 (h) \(\lim_{x \to 2} f(x) \)

 (i) \(\lim_{x \to \infty} f(x) \)

(2) Find all points of discontinuity of \(f(x) \) and state the type of each one.

Problem 2:

(1) Use the definition of the derivative to find \(f'(3) \) where \(f(x) = 1 - x^2 \).

(2) Find all values of \(C \) which will make the following function continuous.

\[
f(x) = \begin{cases}
2x^2 - C & \text{if } x \leq 2, \\
x + 3C & \text{if } x > 2.
\end{cases}
\]

(3) Find the slope of the line tangent to the graph of \(f(x) = \frac{x - 2 \sqrt{x}}{\sqrt{x}} + 2e^5 \) at \(x = 4 \). (Do not use the limit)