(1) Consider the graph $G = K_{2,3,2}$. Answer each of the following. If your answer is no, explain why; and if yes, support it by construction or calculation.

(a) Is G Eulerian graph?
(b) Is G Hamiltonian graph?
(c) Is G nonseparable?
(d) What is the number of edges in a maximum matching of G?
(e) Does G have a perfect matching?
Let G be a nontrivial labeled graph with vertices $\{v_1, v_2, ..., v_n\}$. Let A and D respectively denote the adjacency and the degree matrices of G and let $A^n = (a^n_{ij})$. What is the graph theoretical meaning of:

(a) a^n_{ij}.

(b) $\frac{1}{2 \times 3} \sum_{i=1}^{n} a^3_{ii}$.

(c) The value of any cofactors of the matrix $D - A$.

(3) Give an equivalent condition for a matching M to be maximum matching. Define any terminology you use.
(4) Either prove or give a counterexample for each of the following statements:

(a) Every cubic graph contains a 1-factor.

(b) If a graph G has exactly two vertices of odd degree, then they are connected by a path.

(c) There is a graph G of order 4 with $\chi(G) = 2$ and $\chi(\overline{G}) = 1$.

(d) If v is a cut-vertex of a connected graph G, then v is not a cut-vertex of \overline{G}.
(e) If G_1 and G_2 are regular graphs, then $G_1 + G_2$ is regular.

(f) If G is a self-complementary graph with n vertices, then $n = 4k$ for some integer k.

(g) Every tree has a perfect matching.

(h) There is a nontrivial graph G, all of whose vertices have different degrees.
(5) Prove each of the following:
(a) If G is connected (n, m)–graph with $m = n - 1$, then G is a tree.
(b) Every transitive tournament is acyclic.
(c) The Petersen graph is not 1–factorable.
(d) The automorphism group of P_5 is Z_2.

Dr. M. R. Alfuraidan