1) Prove that if \(G \) is disconnected graph, then \(\overline{G} \) is connected.

2) Find all cut-vertices and bridges in the graph below.

3) (a) Show that if \(G \) is an \(r \)-regular connected graph, where \(r \) is even, then \(G \) contain, no bridges.

 (b) Is the statement in (a) still true if we replace “\(r \) is even” by “\(r \) is odd”?

4) Prove or disprove (by a counterexample)

 (a) if \(v \) is a cut–vertex of a graph \(G \), then \(k(G - v) = k(G) + 1 \).

 (b) If \(e = uv \) is a bridge in \(G \), then there is a unique \(u - v \) path in \(G \).

 (c) If \(G \) is connected graph containing no bridges, then \(G \) is nonseparable.

5) Can a graph of order \(n \) have three vertices of degree 3 and one of degree 1? If yes, give an example. If no, say why not.
6) If G is a graph with n vertices, then what are the maximum and minimum numbers of

(a) Edges \hspace{1cm} (b) Bridges \hspace{1cm} (c) Blocks

7) Let G be a nontrivial connected graph such that each vertex is of even degree. Show that G has at least one circuit.

8) 1.37 & 1.40 (Textbook)