(1) Evaluate each of the following integrals. (25pts)

(i) \(\int \sec^4 3x \tan 3x \, dx \).

(ii) \(\int_{-1}^{0} \frac{x^3 + x^2 + x - 1}{x^2 + 2x + 1} \, dx \).

(iii) \(\int \frac{\sin x}{1 + 2 \cos^2 x} \, dx \).

(iv) \(\int_{\frac{1}{\sqrt{3}}}^{1} \frac{dx}{x \sqrt{4x^2 - 1}} \).

(v) \(\int_{0}^{3} \sqrt{6x - x^2} \, dx \).
(2) (a) Set up, BUT DO NOT EVALUATE, an integral or sum of integrals that gives the area of the region R in the first quadrant enclosed by \(y = x^2 \), \(y = 2 + x \), and \(x = 0 \).

(i) integrate with respect to \(x \).

(ii) integrate with respect to \(y \).

(10pts)

(b) Set up, BUT DO NOT EVALUATE, an integral or sum of integrals that gives the volume generated by revolving the region enclosed by \(x = 9 \) and \(x = y^2 \) about \(x \)-axis.

(i) integrate with respect to \(x \).

(ii) integrate with respect to \(y \).

(15pts)
(3) (a) Find the arc length of $y = \frac{1}{3}(x^2+2)^{3/2}$, $0 \leq x \leq 3$. (10pts)

(b) If $f(x) = \int_{0}^{x} t^2 \sin(t^2) dt$, find $f'(x)$. (5pts)
(4) (a) Find the interval \([a, b]\) for which the value of the integral \(\int_{a}^{b} (-x^2 + x + 2)\,dx\) is a maximum. (10pts)

(b) Evaluate \(\int_{0}^{n} [[x]]\,dx\), where \(n\) is a positive integer. (5pts)