Student Name:	Student Number:		Serial No.:
Instructor: M. Z. Abu-Sbeih	Math - 132.1	Quiz No. 1	Date: 4-3-2006.

Problem 1: (10 points) If it exists, find the limit. Use the symbols $\infty or -\infty$ as appropriate.

a) $\lim_{x \to 1^{-}} (x^2 - 2x + 3)$ b) $\lim_{x \to 1^{-}} \frac{x^2}{2}$

b)
$$\lim_{x \to 1} \frac{1}{|x|}$$

c)
$$\lim_{x \to 1} \frac{1}{(x-1)^2}$$

d) $\lim_{x \to 1} \frac{1}{x^2 - 1}$

e)
$$\lim_{x \to \infty} \frac{x + x\sqrt{x}}{x^2 + 2x - 1}$$

Problem 2: (4 points)

- a) Find all values of x at which $f(x) = 2 \frac{x}{x^2 3x}$ are discontinuous.
- b) Find all values of C which will make the following function continuous.

$$f(x) = \begin{cases} 2C - x & \text{if } x \le 1, \\ x^2 - 5C & \text{if } x > 1. \end{cases}$$

Problem 3: (6 points)

- a) Use the definition of the derivative to find f'(2) where f(x) = 2-3x.
- b) Find the slope of the line tangent to the graph of $f(x) = x^3 \sqrt{x} + \pi^5$ at x = 1. (Do not use the definition of the derivative.)

Student Name:	Student Number:		Serial No.:
Instructor: M. Z. Abu-Sbeih	Math - 132.3	Quiz No. 1	Date: 4-3-2006.

Problem 1: (10 points) If it exists, find the limit. Use the symbols $\infty or -\infty$ as appropriate.

a)
$$\lim_{x \to 1^{+}} (x^2 - 3x + 4)$$

b) $\lim_{x \to 1} \frac{|x|}{x^2}$

- c) $\lim_{x \to 2} \frac{1}{(x-2)^2}$
- d) $\lim_{x \to 2} \frac{1}{x^2 4}$
- e) $\lim_{x \to \infty} \frac{x^2 + 2x 1}{2x^2 + x\sqrt{x}}$

Problem 2: (4 points)

- a) Find all values of x at which $f(x) = 1 + \frac{x}{x^2 2x}$ are discontinuous.
- b) Find all values of C which will make the following function continuous.

$$f(x) = \begin{cases} 3C - x & \text{if } x \le 2, \\ x^2 - 2C & \text{if } x > 2. \end{cases}$$

Problem 3: (6 points)

- a) Use the definition of the derivative to find f'(2) where f(x) = 3 2x.
- b) Find the slope of the line tangent to the graph of $f(x) = x^2 \sqrt{x} + e^5$ at x = 4. (Do not use the definition of the derivative)