Consider the function \(f(x) = 3x^4 - 4x^3 \).

1. Find all intercepts (if any exists).

2. Find asymptotes (if any exists).

3. Find critical numbers and critical points.

4. Find increasing and decreasing intervals.

5. Find local extrema (using the first derivative test).

6. Find concavity intervals.

7. Find inflection points.

8. Use the second derivative test to check the relative extrema of the function.

9. Sketch the graph. Clearly indicate critical points, and the inflection points.
Consider the function \(f(x) = 4x^3 - 3x^4 \).

1. Find all intercepts (if any exists).

2. Find asymptotes (if any exists).

3. Find critical numbers and critical points.

4. Find increasing and decreasing intervals.

5. Find local extrema (using the first derivative test).

6. Find concavity intervals.

7. Find inflection points.

8. Use the second derivative test to check the relative extrema of the function.

9. Sketch the graph. Clearly indicate critical points, and the inflection points.