Q1 Using Laplace transforms solve the initial value problem \(y'' + 3y' + 2y = 1 \), where \(y = y(t) \) and \(y(0) = 1 \) and \(y'(0) = 0 \).

Q2 Use Laplace transforms to solve the IVP \(c^2 u_{xx} + 1 + u_x, x > 0, t > 0 \) with \(u(0, t) = 0, \lim_{x \to 0^+} u_x = 0 \) and \(u_t(x, 0) = 0, u(x, 0) = 0, x > 0 \).

Q3 Evaluate
(a): \(L^{-1}\left[\frac{1}{4 + (s - 1)^2} \right] \)
(b): \(L^{-1}\left[\frac{1}{s^2 + 2s + 3} \right] \)
(c): \(L\left[\int_0^t (t - \tau) \sin \tau \, d\tau \right] \)

Q4 Find Fourier sine integral representation of \(f(x) = e^{-x} \).

Q5 Given the SL problem \((xy')' + \frac{\lambda}{x} y = 0 \), obtain generalized Fourier series representation of \(f(x) = \alpha_0 \) with \(y(1) = 0 \) and \(y(b) = 0 \).