Check that this exam has 15 questions.

Important Instructions:

1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.

2. Use HB 2.5 pencils only.

3. Use a good eraser. DO NOT use the erasers attached to the pencil.

4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.

5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.

6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.

7. When bubbling, make sure that the bubbled space is fully covered.

8. When erasing a bubble, make sure that you do not leave any trace of penciling.
1. The x-intercept of the tangent line to the curve $y = x\sqrt{x^2 - 8}$ at $x = -3$ is given by

(a) $x = -27$
(b) $x = 27$
(c) $x = \frac{-27}{10}$
(d) $x = 10$
(e) $x = \frac{27}{10}$

2. The values of x for which the function $f(x) = x + 2\sin x$ has tangent lines parallel to the line $2x + 2y = 5$ are

(a) $(2k + 1)\pi$, k is an integer
(b) $2k\pi$, k is an integer
(c) $k\pi$, k is an integer
(d) $(k + 1)\pi$, k is an integer
(e) none of the above
3. If \(y = \arctan(\arcsin \sqrt{x}) \), then \(\frac{dy}{dx} = \)

(a) \(\frac{1}{\sqrt{1 - x^2}[1 + \arcsin x]} \)

(b) \(\frac{1}{\sqrt{1 - x^2}[1 + (\arcsin \sqrt{x})^2]} \)

(c) \(\frac{1}{1 + (\arcsin \sqrt{x})^2} \)

(d) \(\frac{1}{2\sqrt{x}\sqrt{1 - x}[1 + (\arcsin \sqrt{x})^2]} \)

(e) \(\frac{1}{\sqrt{1 - x}[1 + (\arcsin \sqrt{x})^2]} \)

4. If \(f(4) = \frac{1}{4}, \ f'(4) = -\frac{1}{4} \) and \(g(x) = \frac{1 + xf(x)}{\sqrt{x}} \), then \(g'(4) = \)

(a) \(-\frac{1}{2} \)

(b) \(\frac{5}{8} \)

(c) \(-\frac{5}{8} \)

(d) \(-1 \)

(e) \(0 \)
5. Suppose that \(L \) is a function such that \(L'(x) = \frac{1}{x} \) for \(x > 0 \).

Then the derivative of \(F(x) = L(x^4) + L\left(\frac{1}{x}\right) \) is equal to

(a) \(x^4 - x \)
(b) \(\frac{5}{x} \)
(c) \(x^3 \)
(d) \(\frac{3}{x} \)
(e) \(\frac{4}{x^3} \)

6. If \(u = \sqrt[3]{t^2} + 2\sqrt[3]{t^3} \), then \(\frac{du}{dt} \) is equal to

(a) \(\frac{2 + 4\sqrt[4]{t^5}}{5\sqrt[4]{t^5}} \)
(b) \(\frac{2 + 9\sqrt[3]{t^5}}{3\sqrt[3]{t}} \)
(c) \(\frac{6 + 4\sqrt[6]{t^4}}{6\sqrt[6]{t}} \)
(d) \(\frac{9 + 4\sqrt[5]{t^4}}{5\sqrt[5]{t}} \)
(e) \(\frac{2 + 3\sqrt[6]{t}}{6\sqrt[6]{t^3}} \)
7. If \(y = \frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2} \), then \(y' \) is equal to

(a) \(\frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2} \left[2 \sec x + \frac{4 \sec x}{\sin x} - \frac{8x}{x^2 + 1} \right] \)

(b) \(\frac{\sin^2 x \sec^8 x}{\cos^4 x(x^2 + 1)^2} \left[\cot x + \frac{5 \sec x}{\sin x} - \frac{6x}{x^2 + 1} \right] \)

(c) \(\frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2} \left[2 \cot x + \frac{4 \sec^2 x}{\tan x} - \frac{4x}{x^2 + 1} \right] \)

(d) \(\frac{\sin^6 x}{\cos^4 x(x^2 + 1)^2} \left[2 \cot x + \frac{6 \cos x}{\cot x} - \frac{4x}{x^2 + 1} \right] \)

(e) \(\frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2} \left[\cot x + \frac{8 \sec x}{\tan x} - \frac{3x}{x^2 + 1} \right] \)

8. \(\lim_{x \to \pi/4} \frac{\sin x - \cos x}{\cos(2x)} \) is equal to

(a) 1
(b) \(-1\)
(c) \(\sqrt{2}\)
(d) \(-\frac{\sqrt{2}}{2}\)
(e) 0
9. If \(g(x) = \sqrt{5 - 2x} \), then \(g'''(2) \) is equal to

(a) 2

(b) \(-1\)

(c) \(-\frac{1}{2}\)

(d) \(-3\)

(e) 1

10. \(\tanh(\ln x) = \)

(a) \(\frac{x^2 + 1}{1 - x^2} \)

(b) \(\frac{1 - x^2}{x^2 + 1} \)

(c) \(\frac{x^2 - 1}{x^2 + 1} \)

(d) \(\infty \)

(e) \(\frac{x^2 + 1}{x^2 - 1} \)
11. If \((x - y)^2 = x + y\), then

\[
\frac{dy}{dx} = \frac{2x - 2y + 1}{2x - 2y - 1}
\]

(a) \(\frac{dy}{dx} = \frac{2x - 2y + 1}{2x - 2y - 1}\)

(b) \(\frac{dy}{dx} = \frac{2x - 2y - 1}{2x + 2y + 1}\)

(c) \(\frac{dy}{dx} = \frac{2x - 2y - 1}{2x - 2y + 1}\)

(d) \(\frac{dy}{dx} = 2x - 2y - 1\)

(e) \(\frac{dy}{dx} = \frac{2x - 2y + 1}{2x + 2y + 1}\)

12. An equation of the normal line to the graph of \(y = x^x \cos x\) when \(x = \frac{\pi}{2}\) is given by

\[
2\pi(\ln \sqrt{\pi} - \ln \sqrt{2})(y - 1) = 2x - \pi
\]

(a) \(2\pi(\ln \sqrt{\pi} - \ln \sqrt{2})(y - 1) = 2x - \pi\)

(b) \(\pi \ln \sqrt{\pi}(y - 1) = (\ln 2)x - \pi\)

(c) \((\ln \sqrt{\pi} - \ln \sqrt{2})(y - 1) = 2x - \pi\)

(d) \(\pi(\ln \sqrt{\pi} - \ln \sqrt{2})(y - \pi) = x - 1\)

(e) \(2\pi \ln(\pi - 2)(y - 1) = x - \pi\)
13. Which one of the following statements is true about the function \(f(x) = x|x|? \)

(a) \(f \) is not differentiable at \(x = 0 \)

(b) \(f'(-x) = -f'(x) \)

(c) \(f \) is differentiable on \((-\infty, \infty)\) and \(f'(x) = 2x \)

(d) \(f \) is differentiable on \((-\infty, \infty)\) and \(f'(x) = 2|x| \)

(e) \(f \) is differentiable on \((-\infty, \infty)\) and \(f'(x) = -2x \)

14. There are two lines through the point \((2, -3)\) that are tangent to the parabola \(y = x^2 + x \). Then the sum of the slopes of these lines is

(a) 11

(b) 13.5

(c) 7.5

(d) 10

(e) 9
15. If \(\sqrt{x} + \sqrt{y} = 4 \) defines implicitly a relation between \(x \) and \(y \), then \(y'' \) is equal to

(a) \(\frac{\sqrt{xy}}{2x^2y}(x + y) \)

(b) \(\frac{xy + y\sqrt{xy}}{2x^2y} \)

(c) \(-\sqrt{\frac{y}{x}} \)

(d) \(-\sqrt{\frac{x}{y}} \)

(e) \(\frac{x\sqrt{y} + y\sqrt{x}}{2x^2} \)
Name:

ID: __________ Sec: __________

Check that this exam has 15 questions.

Important Instructions:

1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.

2. Use HB 2.5 pencils only.

3. Use a good eraser. DO NOT use the erasers attached to the pencil.

4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.

5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.

6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.

7. When bubbling, make sure that the bubbled space is fully covered.

8. When erasing a bubble, make sure that you do not leave any trace of penciling.
1. The x-intercept of the tangent line to the curve $y = x\sqrt{x^2 - 8}$ at $x = -3$ is given by

(a) $x = \frac{27}{10}$

(b) $x = 27$

(c) $x = -\frac{27}{10}$

(d) $x = -27$

(e) $x = 10$

2. If $f(4) = \frac{1}{4}$, $f'(4) = -\frac{1}{4}$ and $g(x) = \frac{1 + xf(x)}{\sqrt{x}}$, then $g'(4) =$

(a) -1

(b) $\frac{5}{8}$

(c) $\frac{5}{8}$

(d) 0

(e) $-\frac{1}{2}$
3. If \(u = \sqrt{t^2} + 2\sqrt{t^3} \), then \(\frac{du}{dt} \) is equal to

(a) \(\frac{6 + 4\sqrt{t^4}}{6\sqrt{t}} \)
(b) \(\frac{2 + 3\sqrt{t}}{6\sqrt{t^3}} \)
(c) \(\frac{9 + 4\sqrt{t^4}}{5\sqrt{t}} \)
(d) \(\frac{2 + 9\sqrt{t^5}}{3\sqrt{t}} \)
(e) \(\frac{2 + 4\sqrt{t^5}}{5\sqrt{t^5}} \)

4. If \(g(x) = \sqrt{5 - 2x} \), then \(g'''(2) \) is equal to

(a) \(-\frac{1}{2} \)
(b) 2
(c) \(-3 \)
(d) 1
(e) \(-1 \)
5. If \(y = \arctan(\arcsin \sqrt{x}) \), then \(\frac{dy}{dx} = \)

(a) \(\frac{1}{1 + (\arcsin \sqrt{x})^2} \)

(b) \(\frac{1}{\sqrt{1 - x^2}[1 + \arcsin x]} \)

(c) \(\frac{1}{\sqrt{1 - x^2}[1 + (\arcsin \sqrt{x})^2]} \)

(d) \(\frac{1}{2\sqrt{x}\sqrt{1 - x}[1 + (\arcsin \sqrt{x})^2]} \)

(e) \(\frac{1}{\sqrt{1 - x}[1 + (\arcsin \sqrt{x})^2]} \)

6. \(\lim_{x \to \pi/4} \frac{\sin x - \cos x}{\cos(2x)} \) is equal to

(a) 0

(b) \(\sqrt{2} \)

(c) \(-1\)

(d) 1

(e) \(-\frac{\sqrt{2}}{2} \)
7. \(\tanh(\ln x) = \)

(a) \(\frac{x^2 + 1}{x^2 - 1} \)

(b) \(\frac{x^2 - 1}{x^2 + 1} \)

(c) \(\frac{1 - x^2}{x^2 + 1} \)

(d) \(\frac{x^2 + 1}{1 - x^2} \)

(e) \(\infty \)

8. Suppose that \(L \) is a function such that \(L'(x) = \frac{1}{x} \) for \(x > 0 \).

Then the derivative of \(F(x) = L(x^4) + L\left(\frac{1}{x}\right) \) is equal to

(a) \(\frac{4}{x^3} \)

(b) \(x^4 - x \)

(c) \(\frac{5}{x} \)

(d) \(\frac{3}{x} \)

(e) \(x^3 \)
9. If \(y = \frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2} \), then \(y' \) is equal to

(a) \(\frac{\sin^6 x}{\cos^4 x(x^2 + 1)^2} \left[2 \cot x + \frac{6 \cos x}{\cot x} - \frac{4x}{x^2 + 1} \right] \)

(b) \(\frac{\sin^2 x \sec^8 x}{\cos^4 x(x^2 + 1)^2} \left[\cot x + \frac{5 \sec x}{\sin x} - \frac{6x}{x^2 + 1} \right] \)

(c) \(\frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2} \left[\cot x + \frac{8 \sec x}{\tan x} - \frac{3x}{x^2 + 1} \right] \)

(d) \(\frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2} \left[2 \sec x + \frac{4 \sec x}{\sin x} - \frac{8x}{x^2 + 1} \right] \)

(e) \(\frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2} \left[2 \cot x + \frac{4 \sec^2 x}{\tan x} - \frac{4x}{x^2 + 1} \right] \)

10. The values of \(x \) for which the function \(f(x) = x + 2 \sin x \) has tangent lines parallel to the line \(2x + 2y = 5 \) are

(a) \(2k\pi, \ k \) is an integer

(b) \(k\pi, \ k \) is an integer

(c) none of the above

(d) \((k + 1)\pi, \ k \) is an integer

(e) \((2k + 1)\pi, \ k \) is an integer
11. An equation of the normal line to the graph of \(y = x^x \cos x \) when \(x = \frac{\pi}{2} \) is given by

(a) \((\ln \sqrt{\pi} - \ln \sqrt{2})(y - 1) = 2x - \pi \)

(b) \(\pi(\ln \sqrt{\pi} - \ln \sqrt{2})(y - \pi) = x - 1 \)

(c) \(2\pi(\ln \sqrt{\pi} - \ln \sqrt{2})(y - 1) = 2x - \pi \)

(d) \(2\pi \ln(\pi - 2)(y - 1) = x - \pi \)

(e) \(\pi \ln \sqrt{\pi}(y - 1) = (\ln 2)x - \pi \)

12. If \(\sqrt{x} + \sqrt{y} = 4 \) defines implicitly a relation between \(x \) and \(y \), then \(y'' \) is equal to

(a) \(\frac{x\sqrt{y} + y\sqrt{x}}{2x^2} \)

(b) \(\frac{xy + y\sqrt{xy}}{2x^2y} \)

(c) \(-\frac{x}{\sqrt{y}} \)

(d) \(-\frac{y}{\sqrt{x}} \)

(e) \(\frac{\sqrt{xy}}{2x^2y}(x + y) \)
13. There are two lines through the point $(2, -3)$ that are tangent to the parabola $y = x^2 + x$. Then the sum of the slopes of these lines is

(a) 10
(b) 13.5
(c) 9
(d) 11
(e) 7.5

14. If $(x - y)^2 = x + y$, then

(a) $\frac{dy}{dx} = \frac{2x - 2y - 1}{2x - 2y + 1}$
(b) $\frac{dy}{dx} = \frac{2x - 2y + 1}{2x - 2y - 1}$
(c) $\frac{dy}{dx} = \frac{2x - 2y - 1}{2x + 2y + 1}$
(d) $\frac{dy}{dx} = \frac{2x - 2y + 1}{2x + 2y + 1}$
(e) $\frac{dy}{dx} = 2x - 2y - 1$
15. Which one of the following statements is true about the function \(f(x) = x|x| \)?

(a) \(f \) is differentiable on \((-\infty, \infty)\) and \(f'(x) = 2|x| \)

(b) \(f \) is not differentiable at \(x = 0 \)

(c) \(f \) is differentiable on \((-\infty, \infty)\) and \(f'(x) = -2x \)

(d) \(f \) is differentiable on \((-\infty, \infty)\) and \(f'(x) = 2x \)

(e) \(f'(-x) = -f'(x) \)
Name: __

ID: ____________________ Sec: ____________________

Check that this exam has 15 questions.

Important Instructions:

1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.

2. Use HB 2.5 pencils only.

3. Use a good eraser. DO NOT use the erasers attached to the pencil.

4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.

5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.

6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.

7. When bubbling, make sure that the bubbled space is fully covered.

8. When erasing a bubble, make sure that you do not leave any trace of penciling.
1. If $f(4) = \frac{1}{4}$, $f'(4) = -\frac{1}{4}$ and $g(x) = \frac{1 + xf(x)}{\sqrt{x}}$, then $g'(4) =$

(a) $-\frac{5}{8}$

(b) 0

(c) $-\frac{1}{2}$

(d) $\frac{5}{8}$

(e) -1

2. If $y = \frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2}$, then y' is equal to

(a) $\frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2} \left[\cot x + \frac{8 \sec x}{\tan x} - \frac{3x}{x^2 + 1} \right]$

(b) $\frac{\sin^6 x}{\cos^4 x(x^2 + 1)^2} \left[2 \cot x + \frac{6 \cos x}{\cot x} - \frac{4x}{x^2 + 1} \right]$

(c) $\frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2} \left[2 \sec x + \frac{4 \sec^2 x}{\sin x} - \frac{8x}{x^2 + 1} \right]$

(d) $\frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2} \left[2 \cot x + \frac{4 \sec^2 x}{\tan x} - \frac{4x}{x^2 + 1} \right]$

(e) $\frac{\sin^2 x \sec^8 x}{\cos^4 x(x^2 + 1)^2} \left[\cot x + \frac{5 \sec x}{\sin x} - \frac{6x}{x^2 + 1} \right]
3. The values of x for which the function $f(x) = x + 2 \sin x$
has tangent lines parallel to the line $2x + 2y = 5$ are

(a) $(2k + 1)\pi, \ k$ is an integer

(b) none of the above

(c) $k\pi, \ k$ is an integer

(d) $(k + 1)\pi, \ k$ is an integer

(e) $2k\pi, \ k$ is an integer

4. $\lim_{x \to \pi/4} \frac{\sin x - \cos x}{\cos(2x)}$ is equal to

(a) $-\frac{\sqrt{2}}{2}$

(b) 0

(c) $\sqrt{2}$

(d) 1

(e) -1
5. \(\tanh(\ln x) = \)

(a) \(\frac{x^2 + 1}{1 - x^2} \)

(b) \(\frac{x^2 + 1}{x^2 - 1} \)

(c) \(\frac{x^2 - 1}{x^2 + 1} \)

(d) \(\frac{1 - x^2}{x^2 + 1} \)

(e) \(\infty \)

6. If \(u = \sqrt[3]{t^2} + 2\sqrt[3]{t^3} \), then \(\frac{du}{dt} \) is equal to

(a) \(\frac{2 + 3\sqrt{t}}{6\sqrt[3]{t^3}} \)

(b) \(\frac{2 + 9\sqrt[3]{t}}{3\sqrt[3]{t^5}} \)

(c) \(\frac{9 + 4\sqrt[3]{t^4}}{5\sqrt[3]{t}} \)

(d) \(\frac{6 + 4\sqrt[3]{t^4}}{6\sqrt[3]{t}} \)

(e) \(\frac{2 + 4\sqrt[3]{t^5}}{5\sqrt[3]{t^5}} \)
7. The x-intercept of the tangent line to the curve \(y = x\sqrt{x^2 - 8} \) at \(x = -3 \) is given by

(a) \(x = -27 \)
(b) \(x = 10 \)
(c) \(x = -\frac{27}{10} \)
(d) \(x = \frac{27}{10} \)
(e) \(x = 27 \)

8. Suppose that \(L \) is a function such that \(L'(x) = \frac{1}{x} \) for \(x > 0 \). Then the derivative of \(F(x) = L(x^4) + L \left(\frac{1}{x} \right) \) is equal to

(a) \(x^4 - x \)
(b) \(x^3 \)
(c) \(\frac{5}{x} \)
(d) \(\frac{4}{x^3} \)
(e) \(\frac{3}{x} \)
9. If \(y = \text{arctan}(\text{arcsin} \sqrt{x}) \), then \(\frac{dy}{dx} = \)

(a) \(\frac{1}{2\sqrt{x}\sqrt{1-x}[1+(\text{arcsin} \sqrt{x})^2]} \)

(b) \(\frac{1}{\sqrt{1-x}[1+(\text{arcsin} \sqrt{x})^2]} \)

(c) \(\frac{1}{\sqrt{1-x^2}[1+(\text{arcsin} \sqrt{x})^2]} \)

(d) \(\frac{1}{\sqrt{1-x^2}[1+\text{arcsin} x]} \)

(e) \(\frac{1}{1+(\text{arcsin} \sqrt{x})^2} \)

10. If \(g(x) = \sqrt{5-2x} \), then \(g'''(2) \) is equal to

(a) \(-\frac{1}{2} \)

(b) 2

(c) -1

(d) 1

(e) -3
11. An equation of the normal line to the graph of \(y = x^x \cos x\) when \(x = \frac{\pi}{2}\) is given by

(a) \(\pi (\ln \sqrt{\pi} - \ln \sqrt{2})(y - \pi) = x - 1\)

(b) \(2\pi (\ln \sqrt{\pi} - \ln \sqrt{2})(y - 1) = 2x - \pi\)

(c) \(2\pi \ln(\pi - 2)(y - 1) = x - \pi\)

(d) \((\ln \sqrt{\pi} - \ln \sqrt{2})(y - 1) = 2x - \pi\)

(e) \(\pi \ln \sqrt{\pi}(y - 1) = (\ln 2)x - \pi\)

12. There are two lines through the point \((2, -3)\) that are tangent to the parabola \(y = x^2 + x\). Then the sum of the slopes of these lines is

(a) 9

(b) 13.5

(c) 10

(d) 7.5

(e) 11
13. Which one of the following statements is true about the function \(f(x) = x|x| \)?

(a) \(f \) is differentiable on \((-\infty, \infty)\) and \(f'(x) = 2x \)

(b) \(f \) is differentiable on \((-\infty, \infty)\) and \(f'(x) = -2x \)

(c) \(f \) is not differentiable at \(x = 0 \)

(d) \(f'(-x) = -f'(x) \)

(e) \(f \) is differentiable on \((-\infty, \infty)\) and \(f'(x) = 2|x| \)

14. If \(\sqrt{x} + \sqrt{y} = 4 \) defines implicitly a relation between \(x \) and \(y \), then \(y'' \) is equal to

(a) \(-\sqrt{\frac{y}{x}} \)

(b) \(-\sqrt{\frac{x}{y}} \)

(c) \(\frac{\sqrt{xy}}{2x^2y}(x + y) \)

(d) \(\frac{x\sqrt{y} + y\sqrt{x}}{2x^2} \)

(e) \(\frac{xy + y\sqrt{xy}}{2x^2y} \)
15. If $(x - y)^2 = x + y$, then

(a) \(\frac{dy}{dx} = \frac{2x - 2y + 1}{2x + 2y + 1} \)

(b) \(\frac{dy}{dx} = \frac{2x - 2y - 1}{2x + 2y + 1} \)

(c) \(\frac{dy}{dx} = \frac{2x - 2y - 1}{2x - 2y + 1} \)

(d) \(\frac{dy}{dx} = \frac{2x - 2y + 1}{2x - 2y - 1} \)

(e) \(\frac{dy}{dx} = 2x - 2y - 1 \)
Check that this exam has 15 questions.

Important Instructions:

1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.

2. Use HB 2.5 pencils only.

3. Use a good eraser. DO NOT use the erasers attached to the pencil.

4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.

5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.

6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.

7. When bubbling, make sure that the bubbled space is fully covered.

8. When erasing a bubble, make sure that you do not leave any trace of penciling.
1. The x-intercept of the tangent line to the curve $y = x\sqrt{x^2 - 8}$ at $x = -3$ is given by

(a) $x = \frac{-27}{10}$

(b) $x = 27$

(c) $x = -27$

(d) $x = \frac{27}{10}$

(e) $x = 10$

2. Suppose that L is a function such that $L'(x) = \frac{1}{x}$ for $x > 0$. Then the derivative of $F(x) = L(x^4) + L\left(\frac{1}{x}\right)$ is equal to

(a) $x^4 - x$

(b) $\frac{3}{x}$

(c) $\frac{4}{x^3}$

(d) x^3

(e) $\frac{5}{x}$
3. If \(f(4) = \frac{1}{4} \), \(f'(4) = -\frac{1}{4} \) and \(g(x) = \frac{1 + xf(x)}{\sqrt{x}} \), then \(g'(4) = \)

(a) \(\frac{5}{8} \)

(b) \(-\frac{1}{2} \)

(c) 0

(d) \(-\frac{5}{8} \)

(e) \(-1 \)

4. \(\tanh(\ln x) = \)

(a) \(\frac{x^2 + 1}{1 - x^2} \)

(b) \(\frac{x^2 + 1}{x^2 - 1} \)

(c) \(\infty \)

(d) \(\frac{x^2 - 1}{x^2 + 1} \)

(e) \(\frac{1 - x^2}{x^2 + 1} \)
5. If \(u = \frac{3}{\sqrt{t^2}} + 2\sqrt{t^3} \), then \(\frac{du}{dt} \) is equal to

(a) \(\frac{2 + 9\sqrt{t^5}}{3\sqrt{t}} \)
(b) \(\frac{9 + 4\sqrt{t^4}}{5\sqrt{t}} \)
(c) \(\frac{6 + 4\sqrt{t^4}}{6\sqrt{t}} \)
(d) \(\frac{2 + 3\sqrt{t}}{6\sqrt{t^3}} \)
(e) \(\frac{2 + 4\sqrt{t^5}}{5\sqrt{t^5}} \)

6. If \(y = \frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2} \), then \(y' \) is equal to

(a) \(\frac{\sin^2 x \sec^8 x}{\cos^4 x(x^2 + 1)^2} \left[\cot x + \frac{5 \sec x}{\sin x} - \frac{6x}{x^2 + 1} \right] \)
(b) \(\frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2} \left[2 \sec x + \frac{4 \sec x}{\sin x} - \frac{8x}{x^2 + 1} \right] \)
(c) \(\frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2} \left[\cot x + \frac{8 \sec x}{\tan x} - \frac{3x}{x^2 + 1} \right] \)
(d) \(\frac{\sin^6 x}{\cos^4 x(x^2 + 1)^2} \left[2 \cot x + \frac{6 \cos x}{\cot x} - \frac{4x}{x^2 + 1} \right] \)
(e) \(\frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2} \left[2 \cot x + \frac{4 \sec^2 x}{\tan x} - \frac{4x}{x^2 + 1} \right] \)
7. If \(y = \arctan(\arcsin \sqrt{x}) \), then \(\frac{dy}{dx} = \)

(a) \(\frac{1}{\sqrt{1 - x^2}[1 + (\arcsin \sqrt{x})^2]} \)

(b) \(\frac{1}{2\sqrt{x}\sqrt{1 - x}[1 + (\arcsin \sqrt{x})^2]} \)

(c) \(\frac{1}{1 + (\arcsin \sqrt{x})^2} \)

(d) \(\frac{1}{\sqrt{1 - x}[1 + (\arcsin \sqrt{x})^2]} \)

(e) \(\frac{1}{\sqrt{1 - x^2}[1 + \arcsin x]} \)

8. If \(g(x) = \sqrt{5 - 2x} \), then \(g'''(2) \) is equal to

(a) 2

(b) 1

(c) \(-\frac{1}{2} \)

(d) -1

(e) -3
9. The values of \(x \) for which the function \(f(x) = x + 2\sin x \) has tangent lines parallel to the line \(2x + 2y = 5 \) are

(a) \((k + 1)\pi, \ k \) is an integer

(b) \(2k\pi, \ k \) is an integer

(c) \(k\pi, \ k \) is an integer

(d) none of the above

(e) \((2k + 1)\pi, \ k \) is an integer

10. \[\lim_{x \to \pi/4} \frac{\sin x - \cos x}{\cos(2x)} \] is equal to

(a) \(-\frac{\sqrt{2}}{2} \)

(b) \(\sqrt{2} \)

(c) \(-1 \)

(d) \(1 \)

(e) \(0 \)
11. There are two lines through the point \((2, -3)\) that are tangent to the parabola \(y = x^2 + x\). Then the sum of the slopes of these lines is

(a) 9
(b) 13.5
(c) 10
(d) 11
(e) 7.5

12. If \(\sqrt{x} + \sqrt{y} = 4\) defines implicitly a relation between \(x\) and \(y\), then \(y''\) is equal to

(a) \(\frac{\sqrt{xy}}{2x^2y}(x + y)\)
(b) \(-\sqrt{\frac{y}{x}}\)
(c) \(-\sqrt{\frac{x}{y}}\)
(d) \(\frac{x\sqrt{y} + y\sqrt{x}}{2x^2}\)
(e) \(\frac{xy + y\sqrt{xy}}{2x^2y}\)
13. An equation of the normal line to the graph of \(y = x^x \cos x \) when \(x = \frac{\pi}{2} \) is given by

(a) \(2\pi \ln(\pi - 2)(y - 1) = x - \pi \)

(b) \((\ln \sqrt{\pi} - \ln \sqrt{2})(y - 1) = 2x - \pi \)

(c) \(2\pi(\ln \sqrt{\pi} - \ln \sqrt{2})(y - 1) = 2x - \pi \)

(d) \(\pi(\ln \sqrt{\pi} - \ln \sqrt{2})(y - \pi) = x - 1 \)

(e) \(\pi \ln \sqrt{\pi}(y - 1) = (\ln 2)x - \pi \)

14. Which one of the following statements is true about the function \(f(x) = x|x| \)?

(a) \(f'(-x) = -f'(x) \)

(b) \(f \) is differentiable on \((-\infty, \infty)\) and \(f'(x) = 2x \)

(c) \(f \) is differentiable on \((-\infty, \infty)\) and \(f'(x) = 2|x| \)

(d) \(f \) is not differentiable at \(x = 0 \)

(e) \(f \) is differentiable on \((-\infty, \infty)\) and \(f'(x) = -2x \)
15. If \((x - y)^2 = x + y\), then

(a) \(\frac{dy}{dx} = \frac{2x - 2y + 1}{2x - 2y - 1}\)

(b) \(\frac{dy}{dx} = \frac{2x - 2y - 1}{2x - 2y + 1}\)

(c) \(\frac{dy}{dx} = \frac{2x - 2y - 1}{2x + 2y + 1}\)

(d) \(\frac{dy}{dx} = \frac{2x - 2y + 1}{2x + 2y + 1}\)

(e) \(\frac{dy}{dx} = 2x - 2y - 1\)
<table>
<thead>
<tr>
<th>Q</th>
<th>MM</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>a</td>
<td>e</td>
<td>d</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>d</td>
<td>d</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>d</td>
<td>d</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>6</td>
<td>a</td>
<td>b</td>
<td>e</td>
<td>b</td>
<td>e</td>
</tr>
<tr>
<td>7</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>8</td>
<td>a</td>
<td>d</td>
<td>d</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>9</td>
<td>a</td>
<td>d</td>
<td>e</td>
<td>a</td>
<td>e</td>
</tr>
<tr>
<td>10</td>
<td>a</td>
<td>c</td>
<td>e</td>
<td>e</td>
<td>a</td>
</tr>
<tr>
<td>11</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>12</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>e</td>
</tr>
<tr>
<td>13</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>e</td>
<td>c</td>
</tr>
<tr>
<td>14</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>e</td>
<td>c</td>
</tr>
<tr>
<td>15</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
</tr>
</tbody>
</table>