Write clearly. Marks may be deducted for messy work.

<table>
<thead>
<tr>
<th>Question</th>
<th>Marks</th>
<th>Out of</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>
1. Find all values of a for which the vectors $\begin{bmatrix} 1 \\ 1 \\ a \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ a \end{bmatrix}, \begin{bmatrix} a \\ 3 \\ a \end{bmatrix}$ of \mathbb{R}^3 are linearly dependent.

2. Show that if two vectors u, v form a basis of a vector space V, then $\{u + 2v, 2u - v\}$ is also a basis of V.
3. Let \(L : \mathbb{R}^3 \rightarrow \mathbb{R}^4 \) be the linear transformation given by \(L \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -a \\ 0 \\ 0 \\ b \end{pmatrix} \).

(i) Find the matrix representation of \(L \) with respect to the basis \(S = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\} \) of \(\mathbb{R}^3 \) and the basis \(T = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\} \) of \(\mathbb{R}^4 \).

(ii) Find \(\ker L \). Is \(L \) onto? What is the rank of \(L \)?
4. Prove that for any two vectors u, v in an inner product space:

\[\|u + v\|^2 + \|u - v\|^2 = 2\|u\|^2 + 2\|v\|^2. \]

5. We define a product in P_2 by

\[(a_0 + a_1 t + a_2 t^2, b_0 + b_1 t + b_2 t^2) = a_0 b_0 + 2a_1 b_1 + 3a_2 b_2. \]

(i) Show that this is an inner product and find its matrix with respect to the basis \{1, 1 - t, 1 - t^2\} of P_2.

(ii) Find the cosine of the angle between $1 - t^2$ and $1 - t$ with respect to this inner product.
6. Let A, B, and C be $n \times n$ symmetric matrices. Prove that

(i) A is congruent to itself.

(ii) if A is congruent to B then B is congruent to A.

(iii) if A is congruent to B and B is congruent to C, then A is congruent to C.

7. Let A, B be $n \times n$ orthogonal matrices. Prove that AB is orthogonal and that $\det A = \pm 1$.
8. Let g be a quadratic form in 3 variables given by $g(x) = -5x_1^2 + x_2^2 - x_3^2 + 4x_1x_2 + 6x_1x_3$, where $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$. Find the canonical form of g and determine its rank and its signature.

9. Is the quadratic form $3x_1^2 + 2x_2^2 + 3x_3^2 - 2x_1x_2 - 2x_2x_3$ (in 3 variables) positive definite? Justify.
10. Is the matrix \[
\begin{bmatrix}
5 & 0 & 1 \\
1 & 1 & 0 \\
-7 & 1 & 0
\end{bmatrix}
\] diagonalizable? If it is, diagonalize it, otherwise explain why it cannot be diagonalized.

11. Let \(A = \begin{bmatrix}
2 & 0 & 1 \\
0 & 3 & 0 \\
1 & 0 & 2
\end{bmatrix} \). Diagonalize \(A \) using an orthogonal matrix \(P \) (to be determined).
12. Label each of the following statements as TRUE or FALSE.

(i) If 2 matrices A and B are row equivalent and if A is nonsingular then B is nonsingular.
(ii) If a real matrix is skew-symmetric then it cannot have real eigenvalues.
(iii) If all the eigenvalues of 5×5 matrix are equal, then the matrix cannot be diagonalizable.
(iv) The vector \[
\begin{bmatrix}
1 \\
2 \\
4 \\
3
\end{bmatrix}
\] is in the subspace W of \mathbb{R}^4 consisting of all vectors of the form \[
\begin{bmatrix}
a \\
b \\
c - b \\
c - a
\end{bmatrix}.
\]
(v) If a linear transformation $L : P_1 \rightarrow P_1$ has a matrix representation \[
\begin{bmatrix}
1 & -1 \\
1 & 1
\end{bmatrix},
\] then L is an isomorphism.