King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 201 (Section 8) Final Examination Semester II, 2006–2007(062) June 07, 2007

Time: 07:30 a.m. - 10:30 a.m.

Name:			
ID #:		Serial #:	
	Instructor	Location	
	Dr. Abdul Rahim Khan	Building 54 (Exhibition Center)	

Instructions:

- 1. Do not use programmable calculators. Use of ordinary calculator is allowed.
- 2. Show all your work. Less credit will be given for answers not supported by proper work.
- 3. This exam consists of 13 pages.
- 4. Do not forget to write your NAME, ID, and Serial # in the space provided above.

Question #	Grade/Points	
1	/18	
2	/18	
3	/18	
4	/18	
5	/18	
6	/20	
Total:	/110	

1. (a) For the polar curve, $r = 1 - \cos \theta$, find (i) singular point(s) (5 points)

(ii) arc length. (4 points)

(b) Calculate area of the region that lies inside $r=2-2\cos\theta$ and outside r=1. (9 points)

2. (a) Find an equation of the set S of all points equidistant from the points A(-1,5,3) and B(6,2,-2). Hence describe the set S geometrically. (9 points)

(b) Find equation of a plane that contains the point P(5,0,2) and the line x=1+3t, y=4-2t, z=-3+t. (9 points)

3. (a) Describe the surface $4x^2 + 4y^2 + z^2 + 8y - 4z = -4$. Draw its rough sketch. (9 points)

(b) Show that $u = \sin(x - at) + \ln(x + at)$ is a solution of the wave equation $u_{tt} = a^2 u_{xx}$. (9 points)

4. (a) Find equation of the normal line at (-2, 1, -3) to ellipsoid $\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$. (5 points)

(b) Locate extrema and saddle points of $f(x, y) = x \sin y$. (4 points)

(c) Use the Lagrange multiplier method to find extrema of $(x, y, z) = z - x^2 - y^2$ subject to the constraints x + y + z = 1 and $x^2 + y^2 = 4$. (9 points)

5. (a) Evaluate: $\int_0^8 \int_{\sqrt[3]{y}}^2 e^{x^4} dx dy.$ (9 points)

(b) Use polar coordinates to find volume of the solid bounded by the paraboloid $z=4-x^2-y^2$ and the xy-plane. (9 points)

6. (a) Use an iterated integral to find volume of the solid that is bounded by the parabolic cylinders

$$z = x^2, y = x^2 \text{ and } y = 8 - x^2.$$

(10 points)

(b) Change the triple integral to cylindrical coordinates (do not evaluate it):

$$\int_{-1}^{1} \int_{0}^{\sqrt{1-y^2}} \int_{0}^{x} (x^2 + y^2) dz \ dx \ dy.$$

(5 points)

(c) Set up a triple integral in spherical coordinates to find volume of the solid within the sphere $x^2 + y^2 + z^2 = 9$, outside the cone $z = \sqrt{x^2 + y^2}$ and above the xy-plane. (5 points)