Exercise 1 (15 points)
Let G be an abelian group and n a positive integer. Set $G_n = \{ x \in G / x^n = e \}$ and $H = \{ x^n / x \in G \}$. Prove that G / G_n is isomorphic to H. (Hint, use First Isomorphism Theorem for groups).

Exercise 2 (20 points)
Let R be a commutative ring with characteristic 3 and $\phi : R \rightarrow R$ defined by $\phi(x) = x^3$.

1-Prove that ϕ is a ring homomorphism.

2-Prove that for each positive integer n, and for each x, y in R, $x^{3^n} + y^{3^n} = (x + y)^{3^n}$.

3-Find an example of a ring A with characteristic 4 and two elements x, y such that $(x + y)^4 \neq x^4 + y^4$.
Exercise 3 (20 points)
Let K be a field and $\phi : K \to K$ be a ring homomorphism.
Prove that either ϕ is one-to-one or ϕ is the null homomorphism.

Exercise 4 (20 points)
Let R be a commutative ring with unity and I and J two ideals of R.
1-Prove that $I \cap J$ is an ideal of R.
2-Prove that $IJ \subseteq I \cap J$.
3-Suppose that $I + J = R$. Prove that $IJ = I \cap J$.
Exercise 5 (20 points)
Let R and S be a commutative rings with unities, A an ideal of S and $\phi: R \rightarrow S$ be a ring homomorphism. Prove that:
1-If A is a prime ideal of S, then $\phi^{-1}(A)$ is a prime ideal of R.
2-If A is a maximal ideal of S, then $\phi^{-1}(A)$ is a maximal ideal of R.