Exercise 1 (30 points)
1- Let G be a group.
 1- Prove that if $(ab)^2 = a^2b^2$, then $ab = ba$.
 2- Suppose that G satisfies the following property: For every elements a, b and c of G, $ab = ca \Rightarrow b = c$. Prove that G is abelian.

2- Let G be an abelian group and n a positive integer. Set $G_n = \{x \in G / x^n = e\}$ and $H = \{x^n / x \in G\}$. Prove that G/G_n is isomorphic to H. (Hint, use First Isomorphism Theorem for groups).
Exercise 2 (30 points)
Let G be a group and H the subgroup of G generated by the set $S = \{x^{-1}y^{-1}xy, x, y \in G\}$.

1. Prove that H is a normal subgroup of G.
2. Prove that G/H is a abelian.
3. Let N be a subgroup of G. Prove that if G/N is abelian, then $H \leq N$.
4. Prove that if N is a subgroup of G and $H \leq N$, then N is normal
Exercise 3 (25 points)
Let K be a field and $\phi : K \to K$ be a ring homomorphism.
Prove that either ϕ is one-to-one or ϕ is the null homomorphism.
Exercise 4 (30 points)
Let R be a ring and P an ideal of R.

1- Prove that P is prime if and only if R/P is an integral domain.

2- Prove that P is maximal if and only if R/P is a field.

3- In the polynomial ring $\mathbb{Z}[X]$ which one of the following ideals is prime or maximal (justify) $I = (2,X), J = (X)$
Exercise 5 (25 points)
Show whether the following polynomials are reducible or irreducible.

1- $f(X) = 2 + 4X + 6X^3 - 9X^5$ over Z.

2- $g(X) = 3X^2 + 4X + 3$ over Z_5
Exercise 6 (30 points)

Prove that $\mathbb{Z}[\sqrt{-3}]$ is not a Principal Ideal Domain.

(Hint: Over a PID, every irreducible is prime)
Exercise 7 (30 points)
Construct a domain R other than $\mathbb{Z}[\sqrt{-3}]$ and an element x such that x is irreducible but not prime.