1. Find \(\lim_{x \to \infty} \left(\sqrt{x^2 + x} - x \right) \), if it exists. (2 points)

2. Find the constant \(\alpha \) such that the function \(f(x) = \begin{cases} x^2 + x + \alpha^2 & \text{if } x < 2 \\ 2\alpha x + 2 & \text{if } x \geq 2 \end{cases} \) is continuous. (2 points)

3. If \(xy + y^2 = 2 \), find \(y'' \) at \((1,1)\). (2 points)
4. Given the cost of producing q units of a certain product is $C = q^2 - 5q + 3$, find the value of q at which the marginal cost is 1. (2 points)

5. If at $x = 1$ \(\frac{d}{dx} \left[x^k - k^x \right] = 0 \), find the positive constant k. (2 points)

6. Given $f(x, y) = y^2 e^x + \ln(xy)$, find $f_{xy}(1,1)$ (2 points)

7. Examine $f(x, y) = x^2 + 2y^2 - 2xy - 4y + 3$ for relative extrema. (3 points)
8. Find the area bounded by \(y = x^2 \), \(y = 1 \), and \(y = 4 \). (2 points)

9. Integration

 a. \(\int \frac{\cos x}{\sin x + 1} \, dx \) (2 points)

 b. \(\int x^3 \, dx \) (2 points)

 c. \(\int \csc^2 x \cot^3 x \, dx \) (2 points)
d. \[\int_0^1 x^2 \sqrt[3]{7x^3 + 1} \, dx \] (2 points)

e. \[\int_{10}^{10} \sin(\sin(x^2)) \, dx \] (2 points)

f. If \(f''(x) = 6x + 2 \) and \(f'(-1) = 5 \), find \(f(1) - f(-1) \). (2 points)

g. If \(\int_1^4 f(x) \, dx = 6 \), \(\int_2^4 f(x) \, dx = 4 \), and \(\int_1^3 f(x) \, dx = 5 \), find \(\int_2^3 f(x) \, dx \). (2 points)
10. Consider the function \(f(x) = x^{\frac{1}{3}}(x - 8) \) (6 points)

a. Find the first and second derivatives.

b. Find the \(x \) – and \(y \) – intercepts.

c. Find all critical numbers, if any exist.

d. Find the relative extrema, if any exist, and where \(f \) is increasing or decreasing.

e. Find inflection points, if any exist, and where \(f \) is concave up or down.
f. Sketch the graph of $f(x)$ clearly indicating all important points and concavity.

11. Use the definition of the derivative to find $f'(x)$ given that $f(x) = x^2$ (3 points)