Serial No.:	Student Name:		_ Student Number:
Instructor: M. Z	Z. Abu-Sbeih	Math 101- Q3A	Date: 2-4-2008

Problem 1: (5 points) The position of a particle is given by the function $s = f(t) = t^2 - 2t + 1$ where t is measured in seconds and s in meters. Find the total distance traveled by the particle during the first 3 seconds.

Problem 2: (5 points) Find the slope of the line tangent to the curve at x = 0.

$$y = \left(\frac{1+x}{1+x^2}\right)^5$$

<u>Problem 3:</u> (15 points) Find y': a) $y = \sqrt[3]{x^2 + 13x - 4}$

b)
$$y = 2^{\cos x} + \tan^2 x^3$$

c) $y = \cot \sin \cos x$

Serial No.:	Student Name:		_ Student Number:
Instructor: M. Z	Z. Abu-Sbeih	Math 101- Q3B	Date: 2-4-2008

Problem 1: (5 points) The position of a particle is given by the function $s = f(t) = 2t^2 - 4t + 5$ where t is measured in seconds and s in meters. Find the total distance traveled by the particle during the first 4 seconds.

Problem 2: (5 points) Find the slope of the line tangent to the curve at x = 0.

$$y = \left(\frac{1+x^2}{1+x}\right)^{-5}$$

<u>Problem 3:</u> (15 points) Find y': d) $y = \sqrt[3]{x^3 - 20x + 2}$

e)
$$y = 2^{\tan x} + \cos^2 x^3$$

f)
$$y = \sin \cot \cos x$$