81. The area of the region enclosed by the curves
\[y = \sin x, \quad y = \cos x, \quad x = 0 \text{ and } x = \pi \] is

(a) \(2\sqrt{2} - 1 \)
(b) \(2\sqrt{2} + 1 \)
(c) \(\sqrt{2} + 2 \)
(d) \(2\sqrt{2} \)
(e) \(-\sqrt{2} \)

82. The volume of the solid generated by rotating the region enclosed by the curves \(y = x^4 \) and \(y = 1 \) about the line \(y = 2 \) is

(a) 12
(b) \(4\pi - 11 \)
(c) \(\frac{2}{7} \)
(d) \(\frac{208\pi}{45} \)
(e) \(\frac{204\pi}{31} \)
81. Area of the region bounded by the graphs of equations
\[x = y^2 \text{ and } 2y^2 = x+4 \] is

(a) 12

(b) \(\pi - \sqrt{3} \)

(c) \(\frac{32}{3} \)

(d) \(2\pi + 8 \)

(e) \(\frac{\pi}{2} \)

82. The volume of the solid obtained by rotating the region bounded by the curves
\[y = \sqrt{x-1}, \ y = 0 \text{ and } x = 5 \]
about \(x \)-axis is equal to

(a) \(10\pi \)

(b) \(4\pi \)

(c) \(6\pi \)

(d) \(8\pi \)

(e) \(2\pi \)
81. The area of the region bounded by the graphs of
\[y = x^2 - 2 \] and \[y = x \] is

(a) \(\frac{11}{2} \)
(b) \(\frac{3}{2} \)
(c) \(\frac{7}{2} \)
(d) \(\frac{5}{2} \)
(e) \(\frac{9}{2} \)

82. The volume of the solid generated by rotating
the region enclosed by the curves \(y = x \) and \(y = \sqrt{x} \)
about the y-axis is

(a) \(\pi \int_{y_1}^{y_2} (y - y^2) \, dy \)
(b) \(\pi \int_{y_1}^{y_2} (y^2 - y^4) \, dy \)
(c) \(\pi \int_{0}^{1} (x^2 - x) \, dx \)
(d) \(\pi \int_{1}^{0} (y + y^2) \, dy \)
(e) \(\pi \int_{0}^{1} (x - x^2) \, dx \)
Q1. Area of the region bounded by the graphs of the curves
\[y = 6 - x^2 \quad \text{and} \quad y = -2x + 3 \] is
(a) \(\frac{32}{3} \)
(b) 12
(c) 1
(d) \(2\pi \)
(e) \(\sqrt{3} \)

Q2. Volume of the solid generated when region
\[y = \sqrt{x}, \quad x = 4, \quad y = 0 \]
in revolved about y-axis is
(a) \(\sqrt{2} \pi \)
(b) 9
(c) \(\frac{128 \pi}{5} \)
(d) 12
(e) \(\frac{144 \pi}{7} \)