1. [5pts] Find the length of the parametric curve \(x = e^t \cos t, y = e^t \sin t, \) \(0 \leq t \leq \pi/2. \)

2. [5pts] Find the area of the surface generated by revolving the parametric curve \(x = \cos^2 t, y = \sin^2 t, \) \(0 \leq t \leq \pi/2, \) about the \(y \)-axis.

3. [5pts] Find the area enclosed by the curve \(r = 2 \cos 5\theta. \)

4. [6pts] The limaçon \(r = 1 - 2 \sin \theta \) intersects the polar axis at two points \(A \) and \(B \) (apart from the pole).
 (a) Sketch the limaçon.
 (b) Find polar coordinates of \(A \) and \(B. \)
 (c) Find the slope of the tangent lines at \(A \) and at \(B. \)

5. [6pts] (a) Find all values of \(c \) such that the vector \(\vec{v} = (-4c, 3c, 1) \) and \(\vec{w} = (2, c, 4) \) are orthogonal.
 (b) Find two unit vectors \(\vec{a} \) and \(\vec{b} \) in 3-space with direction angles \(\alpha = \pi/3, \beta = \pi/4. \) What is the angle between \(\vec{a} \) and \(\vec{b} ? \)

6. [5pts] A parallelepiped has adjacent edges \(AB, AC, \) and \(AD \) where \(A(2, 1, -1), B(3, 0, 2), C(4, -2, 1), D(5, n, 0). \) If the volume of the parallelepiped is 4, then find the value of the real number \(n. \)