Q.1: Find parametric equations of the line of intersection of the planes \(2x + 3y - 4z = 2\), \(3x - 2y + 3z = 3\).

Q.2: Find the value of \(k\) such that the plane passes through the line of intersection of the planes \(2x + 3y - 4z = 2\), \(3x - 2y + 3z = 3\) is parallel to the plane \(2kx + 3y - 2z = 4\).
Q.3: Reduce the equation to standard form and classify the surface, $2x^2 - y^2 - z^2 - 6x + 2y + 4z + 2 = 0$.

Q.4: Identify the surface whose equation if given by $\rho^2 \left(3 \sin^2 \phi \cos (2\theta) - 2 \cos^2 \phi \right) = 4$.