Q.1: Find the limit \(\lim_{(x,y) \to (0,0)} \frac{3x^2 + \sin^2 y}{2x^2 + 3y^2} \) if exist, or show that limit does not exist.

Q.2: Find \(\frac{\partial z}{\partial x} \) and \(\frac{\partial z}{\partial y} \) for the function \(F(x, y, z) = 2x^2 + 3y^2 + 4z^3 - 5xy + 2xz - 3yz + 9 \).

Q.4: Find and sketch the domain of the function \(f(x, y) = \sqrt{x^2 + y^2 - 4} + \ln (25 - x^2 - y^2) \). Write the domain in words.
Q.3: Show that \(u(x,t) = \sin (x - at) + \ln (x + at) \) is a solution of the wave equation \(\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} \).

Q.5: Show that \(f(x,y) = 2xe^{xy} \) is differentiable at the point \(P(2,0) \) and find the linearization \(L(x,y) \) of \(f(x,y) \) at the point \(P(2,0) \). Use \(L(x,y) \) to approximate \(f(2.1,-0.1) \).

Q.6: If \(z = f(x,y) = 2x^2 + xy - 3y^2 \), find the differential \(dz \). If \(x \) changes from 1 to 1.1 and \(y \) changes from 2 to 2.05, compute the value of \(dz \).