1. (a) (2 points) Verify that \(e^y = y - x^2 + C \) is an implicit solution of the differential equation
\[
\frac{dy}{dx} = \frac{2x}{1 - e^y}.
\]

(b) (2 points) Use the implicit solution given in part (a) to solve the initial-value problem (IVP)
\[
\frac{dy}{dx} = \frac{2x}{1 - e^y}, \quad y(1) = 1.
\]

(c) (2 points) Tell whether the IVP given in part (b) has a unique solution. Justify your answer.
2. (7 points) Solve: \(\sin x \frac{dy}{dx} - y \cos x = \sin^2 x \), where \(0 < x < \frac{\pi}{2} \).
3. (7 points) Solve: \(e^{x^3+y^2} \, dx + \frac{y}{x^2} \, dy = 0. \)
4. (7 points) Solve: \((ye^x + \sin x)dx + (2y + e^x + \cos y)dy = 0\).
5. (6 points)

(a) Use an appropriate substitution to reduce the following differential equation
\[
\frac{dy}{dx} = \frac{2y - x}{x + 3y}
\]
to a separable equation.

(b) Is it possible to write the separable equation obtained in (a) as a linear differential equation? Justify your answer.
6. (7 points) According to Newton’s Law of cooling/warming, the rate of change of temperature \(T(t) \) of an object at any time \(t \) is proportional to the difference between \(T \) and the surrounding temperature \(T_m \). Let \(k \) be the constant of proportionality.

(a) Write the differential equation that models this phenomenon.

(b) Solve the differential equation found in (a) and write its general solution as \(T(t) = T_m + ce^{kt} \).

(c) An object of temperature 10°C is left in a room of temperature 30°C. After 2 minutes the object temperature is 15°C. How long will it take for the object to reach 25°C?