Q.1: (a) (2-points) Consider the differential equation
\[\frac{dy}{dx} = y^2 \] (A)
Verify that \(y = \frac{-1}{x + c} \) is a one parameter family of solutions. (A).

Sol: \(y = \frac{-1}{x + c} \Rightarrow \frac{dy}{dx} = -1 \left(-1 \right) \left(x + c \right)^2 = \frac{1}{(x + c)^2} = y^2. \)

(b) (2-points) Find solutions of equation (A) which satisfies the initial condition \(y(0) = 2 \).

Sol: \(y(0) = 2 \Rightarrow 2 = \frac{-1}{0 + c} \Rightarrow c = -\frac{1}{2} \) and \(y = \frac{-1}{x - \frac{1}{2}} = \frac{-2}{x - 1}. \)

(c) (2-points) Find, if any, singular solutions of (A) and determine the largest interval of existence of each singular solution obtained.

Sol: Singular solutions are given by \(y^2 = 0 \Rightarrow y = 0 \) and \(\frac{dy}{dx} = 0. \)
The largest interval of existence is \((-\infty, \infty) \).

Q.2: (a) (3-points) Given that \(x(t) = c_1 \cos(wt) + c_2 \sin(wt) \) is the general solution of the differential equation
\[\ddot{x} + wx = 0 \quad \text{on} \quad (-\infty, \infty), \quad w \neq 0. \]

Find all solutions which satisfy the initial conditions \(x(0) = 0 \) and \(\dot{x} \left(\frac{\pi}{2w} \right) = 0. \)

Sol: \(x(0 = 0 \Rightarrow 0 = c_1 \cos(0) + c_2 \sin(0) = c_1.1 \Rightarrow c_1 = 0. \)
\[\dot{x}(t) = -c_1w \sin(wt) + c_2w \cos(wt) \]
\[\dot{x} \left(\frac{\pi}{2w} \right) = 0 \Rightarrow 0 = 0 + c_2w \cos \left(\frac{\pi}{2} \right) = c_2w(0) \]
Since \(w \neq 0 \), therefore \(0 = 0.c_2 \) which is true for any real value of \(c_2. \)

Thus the required solutions are \(x(t) = c_2 \sin(wt) \) with \(c_2 \) arbitrary.

(b) (3-points) Given \(y_1 = e^x \) and \(y_2 = e^x \tan x \) are two solutions of the differential equation
\[y'' - 2(1 + \tan x)y' + (1 + 2 \tan x)y = 0. \]
Determine whether or not the set \(\{ y_1, y_2 \} \) form a fundamental set of solutions on the interval \(\left(0, \frac{\pi}{2} \right) \).

Sol: For \(y_1 = e^x, \ y'_1 = e^x \) and for \(y_2 = e^x \tan x, \ y'_2 = e^x \tan x + e^x \sec^2 x \)

Now \(W = \begin{vmatrix} e^x & e^x \tan x \\ e^x & e^x \tan x + e^x \sec^2 x \end{vmatrix} = \frac{1}{\cos^2 x} e^{2x} \neq 0 \) for all \(x \in \left(0, \frac{\pi}{2} \right) \).

Hence \(\{ y_1, y_2 \} \) forms a fundamental set of solutions.

Q.3: (a) (3-points) Find a suitable substitution that transforms the differential equation

\[xy' + \left(4x^2 + y^2 \right) dx = 0 \]

to a separable equation. **Find the new equation, but do not find its solution.**

Sol: Given DE is a homogeneous equation of degree 2. Let \(y = ux \), then \(dy = xdu + udx \)

Substitute in DE \(\Rightarrow u x^2 (xdu + udx) + (4x^2 + u^2 x^2) dx = 0 \)

\(\Rightarrow x^2 \left[u x du + (2u^2 + 4) dx \right] = 0 \ \Rightarrow u x du = -(2u^2 + 4) dx \)

\(\Rightarrow \left(\frac{u}{2u^2 + 4} \right) du = -\frac{1}{x} dx \) which is separable.

Q.4: (7-points) Solve the initial value problem \(x \ln (x) \frac{dy}{dx} + \cos^2 (y) = 1, \ y(e) = \frac{\pi}{4} \).

Sol: \(x \ln (x) \frac{dy}{dx} + \cos^2 (y) = 1 \)

\(x \ln (x) \frac{dy}{dx} = 1 - \cos^2 (y) \)
\[x \ln (x) \frac{dy}{dx} = \sin^2 (y) \]
\[\frac{1}{\sin^2 (y)} dy = \frac{1}{x \ln (x)} dx \]
\[\csc^2 (y) dy = \frac{1}{x \ln (x)} dx \]
\[- \cot (y) = \ln (\ln |x|) + C \]
\[y (e) = \frac{\pi}{4} \Rightarrow - \cot \left(\frac{\pi}{4} \right) = \ln \ln (e) + C \Rightarrow -1 = \ln (1) + C \Rightarrow C = -1. \]
\[\cot (y) + \ln (\ln |x|) = 1. \]

Q.5: **(6-points)** Find the general solution of the differential equation

\[ydx = (x + y \ln y) dy. \]

Sol: Given DE is linear in \(x \) and \(\frac{dx}{dy} \) because it can be written as \(\frac{dx}{dy} - \frac{1}{y} x = \ln y. \)

\[IF = e^{\int -\frac{1}{y} dy} = e^{-\ln y} = \frac{1}{y}. \]

\[\frac{d}{dy} \left(\frac{x}{y} \right) = \frac{\ln y}{y} \Rightarrow \frac{x}{y} = \int \frac{\ln y}{y} dy = \frac{(\ln y)^2}{2} + C \]

\[x = \frac{y (\ln y)^2}{2} + Cy. \]

Q.6: **(7-points)** Solve the differential equation \((3x + 4y^2) dx + 4xy dy = 0\) by transforming it into an exact equation.

Sol: \(M (x, y) = 3x + 4y^2 \) and \(N (x, y) = 4xy \)

\[M_y = 8y \text{ and } N_x = 4y \]

Since \(M_y \neq N_x \), the given DE is not exact. So we need to find an integrating factor.

\[\frac{M_y - N_x}{N} = \frac{8y - 4y}{4xy} = \frac{4y}{4xy} = \frac{1}{x}, \text{ function of } x \text{ alone.} \]

\[\mu (x) = e^{\int \frac{M_y - N_x}{N} dx} = e^{\int \frac{1}{x} dx} = e^{\ln (x)} = x. \]

Multiply given DE by \(x \) to make it exact.
\[(3x^2 + 4xy^2) \, dx + 2x^2y \, dy = 0.\]

\[
\mu(x) \, N(x, y) = \frac{\partial f}{\partial y} = 4x^2y
\]

\[f(x, y) = \int 4x^2y \, dy + h(x)\]

\[f(x, y) = 2x^2y^2 + h(x)\]

\[\frac{\partial f}{\partial x} = 4xy^2 + h'(x) = \mu(x)M(x, y) = 3x^2 + 4xy^2\]

\[h'(x) = 3x^2 \implies h(x) = x^3 + C\]

Thus \[f(x, y) = 2x^2y^2 + x^3 + C = 0\]

OR \[2x^2y^2 + x^3 = C.\]

Q.7: (6-points) A glass of water initially at 50°F is placed in a freezer. The freezer is kept at the constant temperature 30°F. After one hour the temperature of the water in glass is 40°F. Find the exact time needed for the temperature of the water to reach 32°F after it is placed in the freezer.

Sol: Solve the IVP \[\frac{dT}{dt} = k(T - T_m), \quad T(0) = 50, \quad \text{with} \quad T_m = 30°F.\]

\[T(t) = T_m + ce^{kt} = 30 + ce^{kt}.\]

Using \(T(0) = 50\) we get \(c = 20\). So \(T(t) = 30 + 20e^{kt}\)

Using \(T(1) = 40 \implies 40 = 30 + 20e^k \implies k = -\ln 2 = -\ln \left(\frac{1}{2}\right).\)

\[T(t) = 30 + 20e^{t\ln\left(\frac{1}{2}\right)} = 30 + 20e^{\ln\left(\frac{1}{2}\right)}t = 30 + 20\left(\frac{1}{2}\right)^t.\]

Now \(T(t) = 32 \implies 32 = 30 + 20\left(\frac{1}{2}\right)^t \implies \left(\frac{1}{2}\right)^t = \frac{1}{10} \implies t = \frac{\ln\left(\frac{1}{10}\right)}{\ln\left(\frac{1}{2}\right)} = \frac{\ln 10}{\ln 2}.\]