(1) Show that a group G is abelian if and only if the map $f : G \rightarrow G$ given by $f(x) = x^{-1}$ is an automorphism.

(2) Let $G = < a >$ be a cyclic group and let H be any subgroup. Show that every homomorphism $f : G \rightarrow H$ is completely determined by $f(a)$.

(3) Let G be a finite group of order $2n$. Show that G contains an element of order 2.
(4) Let G be a group and let H, K be subgroups of G.
(a) Show by example that the set HK need not to be a subgroup of G.
(b) Show that HK is a subgroup of G if G is abelian.

(5) Show that $Aut(Z_p) \cong Z_{p-1}$ (p prime).
(6) Construct the subgroup lattice of \(Z_{50} \).
(7) T/F. If true prove it otherwise give a counter example.

(a) Let G be a finite cyclic group. If $n || |G|$, then \exists a subgroup of order n.

(b) Let G be a group. If $a^2 = e$ for all $a \in G$, then G is abelian.

(c) Every left coset is a right coset for some subgroup.