Consider the matrix \(A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \)

(a) Find the characteristic polynomial of \(A \).

(b) Find the eigenvalues and the corresponding eigenvectors of \(A \).

(c) Is the matrix \(A \) diagonalizable?? Why.

(d) If \(A \) is diagonalizable, find a nonsingular matrix \(P \) and a diagonal matrix \(D \) such that \(A = PDP^{-1} \).

(e) Find the determinant of \(A \).

(f) Use Cayley-Hamilton Theorem to find \(A^3 \) without multiplying \(A \) with itself.