1. \(\int_{-1}^{1} |x^3 - x| \, dx = \)

(a) 1
(b) \(\frac{1}{2} \)
(c) \(\pi \)
(d) \(\sqrt{2} \)
(e) 1.5

2. The volume of solid generated by revolving the region enclosed by \(x = y^2 \) and \(x = y \) about the line \(y = -1 \) is

(a) \(\frac{\pi}{2} \)
(b) 3\(\pi \)
(c) 1 - \(\pi \)
(d) 1
(e) \(\frac{3\pi}{4} \)
1. The area of the region enclosed by $x = y^2$ and $x = y + 2$ is equal to

(a) $\pi/2$
(b) $9/2$
(c) $1/2$
(d) 2π
(e) 3

2. $\int_{0}^{\pi/2} \cos x \sin (\sin x) dx =$

(a) $\sin 1$
(b) $\sqrt{3}$
(c) $1/2$
(d) $1 - \pi$
(e) $1 - \cos 1$
1. The area of the region enclosed by the graphs of \(y = 6 - x^2 \) and \(y = -2x + 3 \) is equal to

- (a) \(2 \)
- (b) \(\sqrt{3} \)
- (c) \(5 \)
- (d) \(\frac{2}{3} \)
- (e) \(\frac{32}{3} \)

2. The volume of the solid generated by revolving the region enclosed by the curves \(x = 1 - y^2, x = 2 + y^2, y = -1, y = 1 \) about y-axis is

- (a) \(\frac{\pi}{2} \)
- (b) \(10\pi \)
- (c) \(3\pi \)
- (d) \(2 \)
- (e) \(1 - \pi \)
1. \[\int_{0}^{1} \frac{x}{1+x^4} \, dx = \]

 (a) 3\(\pi\)
 (b) \(\frac{4}{9}\)
 (c) 1
 (d) \(\frac{\pi}{8}\)
 (e) \(\pi\)

2. \[\int_{0}^{2} (1 - x^2) \, dx = \]

 (a) 2\(\pi\)
 (b) \(\frac{2}{5}\)
 (c) 1
 (d) -1
 (e) \(\frac{2}{3}\)