King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 102
Final Exam
Term 091
Saturday 30/1/2010
Net Time Allowed: 180 minutes

MASTER VERSION

$$1. \qquad \int \frac{(2-\sqrt{x})^2}{x} \, dx =$$

(a)
$$x - 8\sqrt{x} + 4 \ln|x| + C$$

(b)
$$x - 2\sqrt{x} + 4\ln|x| + C$$

(c)
$$x - \frac{8}{\sqrt{x}} + 4 \ln|x| + C$$

(d)
$$1 - 4\sqrt{x} + \ln|x| + C$$

(e)
$$2x - \frac{1}{4}\sqrt{x} + 2\ln|x| + C$$

2.
$$\int \frac{1}{x\sqrt{25 - (\ln x)^2}} \, dx =$$

(a)
$$\sin^{-1}\left(\frac{\ln x}{5}\right) + C$$

(b)
$$\sin^{-1}\left(\frac{\ln x}{\sqrt{5}}\right) + C$$

(c)
$$\frac{1}{5}\sin^{-1}(\ln x) + C$$

(d)
$$\sin^{-1}\left(\cos\left(\frac{x}{5}\right)\right) + C$$

(e)
$$\frac{1}{5}\sin^{-1}\left(\frac{\ln x}{5}\right) + C$$

3. If
$$F(x) = \int_{\sqrt{x}}^{\sqrt{2}} \frac{2}{1+t^4} dt$$
, then $F'(x) =$

(a)
$$\frac{-1}{(1+x^2)\sqrt{x}}$$

(b)
$$\frac{2}{5} - \frac{2}{1+x^2}$$

(c)
$$\frac{2}{1+x^2}$$

(d)
$$\frac{2}{1+x^4}$$

(e)
$$\frac{2}{(1+x^2)\sqrt{x}}$$

4.
$$\lim_{n \to +\infty} \sum_{i=1}^{n} \frac{1}{n} \cdot e^{-\frac{2i}{n}} =$$

(a)
$$\int_0^2 \frac{1}{2} e^{-x} dx$$

(b)
$$\int_0^2 e^{-2x} dx$$

(c)
$$\int_0^1 2e^{-x} dx$$

$$(d) \int_0^1 e^{-\frac{x}{2}} dx$$

(e)
$$\int_{1}^{2} 2e^{-x} dx$$

- 5. The sum of the series $\sum_{n=0}^{+\infty} \frac{1}{3^n \cdot n!}$ is equal to
 - (a) $\sqrt[3]{e}$
 - (b) e^3
 - (c) $\sin(3)$
 - (d) $\sqrt[3]{e} 1$
 - (e) e^{-3}

- 6. $\int_0^{\pi/4} \tan^4 x \ dx =$
 - (a) $\frac{\pi}{4} \frac{2}{3}$
 - (b) $\frac{\pi}{3} \frac{1}{2}$
 - (c) $\frac{\pi}{2} + \frac{1}{2}$
 - (d) $\frac{\pi}{4} \frac{1}{2}$
 - (e) $\frac{\pi}{3} + \frac{2}{3}$

- 7. The coefficient of x^{10} in the Maclaurin series of $f(x) = \sin(x^2)$ is equal to
 - (a) $\frac{1}{120}$
 - (b) 0
 - (c) $\frac{-1}{6}$
 - (d) $\frac{1}{6}$
 - (e) $\frac{1}{10}$

- 8. The improper integral $\int_{-\infty}^{1} \frac{x}{(1+x^2)^3} dx$ is
 - (a) convergent and its value is $\frac{-1}{16}$
 - (b) convergent and its value is $\frac{2}{9}$
 - (c) convergent and its value is $\frac{-3}{8}$
 - (d) convergent and its value is $\frac{3}{16}$
 - (e) divergent

9. If the line x = a divides the region bounded by the curves

$$y = \frac{1}{x^2}$$
, $y = 0, x = 1$, and $x = 4$

into two regions with equal area, then a =

- (a) $\frac{8}{5}$
- (b) 2
- (c) $\frac{8}{3}$
- (d) $\frac{4}{3}$
- (e) 3

10. The interval of convergence I and the radius of convergence R of the power series

$$\sum_{n=1}^{+\infty} \frac{(x-1)^n}{n \cdot 2^n}$$

are

- (a) I = [-1, 3) and R = 2
- (b) I = (-1, 3) and R = 2
- (c) I = (-1, 1) and R = 1
- (d) I = [-2, 2] and R = 2
- (e) I = [-1, 3] and R = 2

11. The volume of the solid obtained by rotating the region enclosed by the curves

$$y = e^x, y = 0, x = 0, \text{ and } x = 1$$

about the y-axis is equal to

- (a) 2π
- (b) π
- (c) 3π
- (d) $\frac{\pi}{2}$
- (e) $\frac{3\pi}{2}$

- 12. If $\frac{8x^2 + 7x 6}{x^2(x+3)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+3}$, then A + B + C =
 - (a) 6
 - (b) -5
 - (c) 3
 - (d) 0
 - (e) -1

- 13. The series $\sum_{n=1}^{+\infty} e^{-n} \cdot n!$
 - (a) diverges by the ratio test
 - (b) converges by the ratio test
 - (c) diverges by the integral test
 - (d) converges by the comparison test
 - (e) converges by the test for divergence

14. The first three terms of the Taylor series of $f(x) = \cos(2x)$ about $a = \pi$ are given by

(a)
$$1 - 2(x - \pi)^2 + \frac{2}{3}(x - \pi)^4$$

(b)
$$1 - 2(x - \pi) - 2(x - \pi)^2$$

(c)
$$1 - 2(x - \pi)^2 + 16(x - \pi)^4$$

(d)
$$-1 + 2(x - \pi) + \frac{4}{3}(x - \pi)^3$$

(e)
$$1 + 2(x+\pi)^2 - \frac{2}{3}(x+\pi)^4$$

15. The sequence
$$\left\{ \frac{(2n-1)! \cdot (5n^2 + 2n)}{(2n+1)!} \right\}_{n=1}^{+\infty}$$

- (a) converges and its limit is $\frac{5}{4}$
- (b) converges and its limit is 5
- (c) converges and its limit is 1
- (d) converges and its limit is $\frac{5}{2}$
- (e) is divergent

16. The series
$$\sum_{n=1}^{+\infty} (-1)^n \frac{n+27}{n+28}$$
 is

- (a) divergent
- (b) absolutely convergent
- (c) conditionally convergent
- (d) divergent by the integral test
- (e) convergent by the ratio test

- 17. The smallest number of terms of the series $\sum_{n=1}^{+\infty} \frac{(-1)^n}{(2n+1)^4}$ that we need to add so that |error| < 0.0001 is
 - (a) 4
 - (b) 40
 - (c) 400
 - (d) 10
 - (e) 22

- 18. $\int_{2}^{4} \frac{\sqrt{x^2 4}}{x} \, dx =$
 - (a) $2\sqrt{3} \frac{2\pi}{3}$
 - (b) $1 \frac{2\pi}{3}$
 - (c) $\sqrt{3} \pi$
 - (d) $2\sqrt{3} + \frac{\pi}{3}$
 - (e) $\sqrt{3} \frac{\pi}{2}$

19. Which one of the following statements is **TRUE**:

(a) If
$$a_n > 0$$
 for all n and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{1}{3}$, then $\sum_{n=1}^{+\infty} a_n$ is convergent

- (b) The series $\sum_{n=1}^{+\infty} n^{-\pi}$ is divergent
- (c) If $0 < a_n \le b_n$ for all n and $\sum_{n=1}^{+\infty} b_n$ diverges, then $\sum_{n=1}^{+\infty} a_n$ diverges
- (d) If $\lim_{n \to +\infty} a_n = 0$, then $\sum_{n=1}^{+\infty} a_n$ is convergent
- (e) If $\lim_{n \to +\infty} \sqrt[n]{|a_n|} = 1$, then $\sum_{n=1}^{+\infty} a_n$ is divergent

20.
$$\int_0^1 |4x - 3| \ dx =$$

- (a) $\frac{5}{4}$
- (b) $\frac{7}{8}$
- (c) $\frac{3}{8}$
- (d) 2
- (e) $\frac{3}{4}$

21. The series
$$\sum_{n=1}^{+\infty} \frac{n^{2n}}{(1+2n^2)^n}$$

- (a) converges by the root test
- (b) diverges by the root test
- (c) is a series with which the root test is inconclusive
- (d) diverges by the test of divergence
- (e) diverges by the comparison test

$$22. \qquad \int \frac{\sqrt{x}}{x+4} \ dx =$$

(a)
$$2\sqrt{x} - 4\tan^{-1}\left(\frac{\sqrt{x}}{2}\right) + C$$

(b)
$$2\sqrt{x} + 2\tan^{-1}\left(\frac{\sqrt{x}}{2}\right) + C$$

(c)
$$\sqrt{x} - 2 \tan^{-1}(\sqrt{x}) + C$$

(d)
$$\sqrt{x} - 4\tan^{-1}\left(\frac{\sqrt{x}}{2}\right) + C$$

(e)
$$4\sqrt{x} + 2\tan^{-1}(\sqrt{x}) + C$$

- 23. The series $\sum_{n=1}^{+\infty} \frac{2^n + (-4)^n}{8^n}$
 - (a) converges and its sum is 0
 - (b) converges and its sum is $\frac{2}{3}$
 - (c) converges and its sum is $\frac{3}{8}$
 - (d) converges and its sum is $\frac{3}{4}$
 - (e) diverges

24. The area of the region bounded by the curves

$$y = 5x - x^2$$
 and $y = x$

is equal to

- (a) $\frac{32}{3}$
- (b) $\frac{64}{5}$
- (c) $\frac{32}{7}$
- (d) $\frac{18}{5}$
- (e) $\frac{35}{6}$

25.
$$\int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} \, dx =$$

(a)
$$x - \sqrt{1 - x^2} \cdot \sin^{-1} x + C$$

(b)
$$\ln|1-x| - \sqrt{1-x^2} \cdot \sin^{-1}x + C$$

(c)
$$\sqrt{1-x^2} - \sin^{-1}x + C$$

(d)
$$\sqrt{1-x^2}(1-\sin^{-1}x)+C$$

(e)
$$\frac{1}{2}(\sin^{-1}x)^2 + C$$

26. The length of the curve

$$y = 10 + 2x^{3/2}, \quad 0 \le x \le 1$$

is equal to

(a)
$$\frac{2}{27}(10\sqrt{10}-1)$$

(b)
$$\frac{1}{27}(\sqrt{10}-1)$$

(c)
$$\frac{2}{9}$$

(d)
$$\frac{2}{9}(10\sqrt{10}-3)$$

(e)
$$\frac{5}{27}(\sqrt{10}-10)$$

27. A power series representation for $f(x) = \frac{2}{(1-2x)^2}$ is given by

(a)
$$\sum_{n=1}^{+\infty} n \cdot 2^n x^{n-1}$$

(b)
$$\sum_{n=0}^{+\infty} 2^n \frac{x^{n+1}}{n+1}$$

(c)
$$\sum_{n=0}^{+\infty} 2^n x^n$$

(d)
$$\sum_{n=0}^{+\infty} n \cdot 2^n x^{n+1}$$

(e)
$$\sum_{n=1}^{+\infty} \frac{2^n}{n} x^n$$

28. The area of the surface obtained by rotating the curve

$$y = x^5, \quad 1 \le x \le 32$$

about the x-axis is given by

(a)
$$\int_1^{32} 2\pi x^5 \sqrt{1 + 25x^8} \, dx$$

(b)
$$\int_{1}^{32} 2\pi x^5 \sqrt{1+5x^4} \ dx$$

(c)
$$\int_{1}^{2} 2\pi y \sqrt{1 + 25x^8} \, dy$$

(d)
$$\int_1^2 2\pi \sqrt[5]{y} \cdot \sqrt{1 + \frac{1}{25}y^{-8/5}} \, dy$$

(e)
$$\int_{1}^{32} 2\pi x \sqrt{1 + 25x^8} \, dx$$