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1.
∫ (2−√x)2

x
dx =

x− 8
√

x + 4 ln |x|+ C(a)

x− 2
√

x + 4 ln |x|+ C(b)

x− 8√
x

+ 4 ln |x|+ C(c)

1− 4
√

x + ln |x|+ C(d)

2x− 1

4

√
x + 2 ln |x|+ C(e)

2.
∫ 1

x
√

25− (ln x)2
dx =

sin−1
(
ln x

5

)
+ C(a)

sin−1
(
ln x√

5

)
+ C(b)

1

5
sin−1(ln x) + C(c)

sin−1
(
cos

(
x

5

))
+ C(d)

1

5
sin−1

(
ln x

5

)
+ C(e)
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3. If F (x) =
∫ √

2
√

x

2

1 + t4
dt, then F ′(x) =

−1

(1 + x2)
√

x
(a)

2

5
− 2

1 + x2(b)

2

1 + x2(c)

2

1 + x4(d)

2

(1 + x2)
√

x
(e)

4. lim
n→+∞

n∑

i=1

1

n
· e− 2i

n =

∫ 2

0

1

2
e−xdx(a)

∫ 2

0
e−2xdx(b)

∫ 1

0
2e−xdx(c)

∫ 1

0
e−

x
2 dx(d)

∫ 2

1
2e−xdx(e)
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5. The sum of the series
+∞∑

n=0

1

3n · n!
is equal to

3
√

e(a)

e3(b)

sin(3)(c)

3
√

e− 1(d)

e−3(e)

6.
∫ π/4

0
tan4 x dx =

π

4
− 2

3
(a)

π

3
− 1

2
(b)

π

2
+

1

2
(c)

π

4
− 1

2
(d)

π

3
+

2

3
(e)
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7. The coefficient of x10 in the Maclaurin series of f(x) = sin(x2)
is equal to

1

120
(a)

0(b)

−1

6
(c)

1

6
(d)

1

10
(e)

8. The improper integral
∫ 1

−∞
x

(1 + x2)3 dx is

convergent and its value is
−1

16
(a)

convergent and its value is
2

9
(b)

convergent and its value is
−3

8
(c)

convergent and its value is
3

16
(d)

divergent(e)
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9. If the line x = a divides the region bounded by the curves

y =
1

x2 , y = 0, x = 1, and x = 4

into two regions with equal area, then a =

8

5
(a)

2(b)

8

3
(c)

4

3
(d)

3(e)

10. The interval of convergence I and the radius of convergence
R of the power series

+∞∑

n=1

(x− 1)n

n · 2n

are

I = [−1, 3) and R = 2(a)

I = (−1, 3) and R = 2(b)

I = (−1, 1) and R = 1(c)

I = [−2, 2] and R = 2(d)

I = [−1, 3] and R = 2(e)
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11. The volume of the solid obtained by rotating the region
enclosed by the curves

y = ex, y = 0, x = 0, and x = 1

about the y-axis is equal to

2π(a)

π(b)

3π(c)

π

2
(d)

3π

2
(e)

12. If
8x2 + 7x− 6

x2(x + 3)
=

A

x
+

B

x2 +
C

x + 3
, then A + B + C =

6(a)

−5(b)

3(c)

0(d)

−1(e)
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13. The series
+∞∑

n=1
e−n · n!

diverges by the ratio test(a)

converges by the ratio test(b)

diverges by the integral test(c)

converges by the comparison test(d)

converges by the test for divergence(e)

14. The first three terms of the Taylor series of f(x) = cos(2x)
about a = π are given by

1− 2(x− π)2 +
2

3
(x− π)4(a)

1− 2(x− π)− 2(x− π)2(b)

1− 2(x− π)2 + 16(x− π)4(c)

−1 + 2(x− π) +
4

3
(x− π)3(d)

1 + 2(x + π)2 − 2

3
(x + π)4(e)
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15. The sequence





(2n− 1)! · (5n2 + 2n)

(2n + 1)!





+∞

n=1

converges and its limit is
5

4
(a)

converges and its limit is 5(b)

converges and its limit is 1(c)

converges and its limit is
5

2
(d)

is divergent(e)

16. The series
+∞∑

n=1
(−1)nn + 27

n + 28
is

divergent(a)

absolutely convergent(b)

conditionally convergent(c)

divergent by the integral test(d)

convergent by the ratio test(e)
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17. The smallest number of terms of the series
+∞∑

n=1

(−1)n

(2n + 1)4

that we need to add so that |error| < 0.0001 is

4(a)

40(b)

400(c)

10(d)

22(e)

18.
∫ 4

2

√
x2 − 4

x
dx =

2
√

3− 2π

3
(a)

1− 2π

3
(b)

√
3− π(c)

2
√

3 +
π

3
(d)

√
3− π

2
(e)



Math 102, Final Exam, Term 091 Page 10 of 14 MASTER

19. Which one of the following statements is TRUE:

If an > 0 for all n and lim
n→∞

an+1

an
=

1
3
, then

+∞∑

n=1

an is convergent(a)

The series
+∞∑

n=1

n−π is divergent(b)

If 0 < an ≤ bn for all n and
+∞∑

n=1

bn diverges, then
+∞∑

n=1

an diverges(c)

If lim
n→+∞ an = 0, then

+∞∑

n=1

an is convergent(d)

If lim
n→+∞

n

√
|an| = 1, then

+∞∑

n=1

an is divergent(e)

20.
∫ 1

0
|4x− 3| dx =

5

4
(a)

7

8
(b)

3

8
(c)

2(d)

3

4
(e)
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21. The series
+∞∑

n=1

n2n

(1 + 2n2)n

converges by the root test(a)

diverges by the root test(b)

is a series with which the root test is inconclusive(c)

diverges by the test of divergence(d)

diverges by the comparison test(e)

22.
∫ √

x

x + 4
dx =

2
√

x− 4 tan−1



√

x

2


 + C(a)

2
√

x + 2 tan−1



√

x

2


 + C(b)

√
x− 2 tan−1(

√
x) + C(c)

√
x− 4 tan−1



√

x

2


 + C(d)

4
√

x + 2 tan−1(
√

x) + C(e)
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23. The series
+∞∑

n=1

2n + (−4)n

8n

converges and its sum is 0(a)

converges and its sum is
2

3
(b)

converges and its sum is
3

8
(c)

converges and its sum is
3

4
(d)

diverges(e)

24. The area of the region bounded by the curves

y = 5x− x2 and y = x

is equal to

32

3
(a)

64

5
(b)

32

7
(c)

18

5
(d)

35

6
(e)
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25.
∫ x sin−1 x√

1− x2
dx =

x−
√

1− x2 · sin−1 x + C(a)

ln |1− x| −
√

1− x2 · sin−1 x + C(b)

√
1− x2 − sin−1 x + C(c)

√
1− x2(1− sin−1 x) + C(d)

1

2
(sin−1 x)2 + C(e)

26. The length of the curve

y = 10 + 2x3/2 , 0 ≤ x ≤ 1

is equal to

2

27
(10
√

10− 1)(a)

1

27
(
√

10− 1)(b)

2

9
(c)

2

9
(10
√

10− 3)(d)

5

27
(
√

10− 10)(e)
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27. A power series representation for f(x) =
2

(1− 2x)2 is

given by

+∞∑

n=1
n · 2nxn−1(a)

+∞∑

n=0
2n xn+1

n + 1
(b)

+∞∑

n=0
2nxn(c)

+∞∑

n=0
n · 2nxn+1(d)

+∞∑

n=1

2n

n
xn(e)

28. The area of the surface obtained by rotating the curve

y = x5, 1 ≤ x ≤ 32

about the x-axis is given by

∫ 32

1
2πx5

√
1 + 25x8 dx(a)

∫ 32

1
2πx5

√
1 + 5x4 dx(b)

∫ 2

1
2πy

√
1 + 25x8 dy(c)

∫ 2

1
2π 5
√

y ·
√√√√1 +

1

25
y−8/5 dy(d)

∫ 32

1
2πx

√
1 + 25x8 dx(e)




