Department of Mathematics and Statistics King Fahd University of Petroleum and Minerals Kingdom of Saudi Arabia

Math 101-092	Take-home exam 092	
Name : =		ID#

Q 1

Sec #: -----

- a) Using (ε, δ) definition prove that $\lim_{x \to 3} f(x) = \lim_{x \to 3} (1 5x) = -14$. Find δ when $\varepsilon = 0.5$.
- b) Given that $\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{2}{x+1} = 1/2$ and $\varepsilon = 0.25$. Find the maximum value of δ such that |f(x) 1/2| < 0.25 when $|x-3| < \delta$

Q # 2 Let
$$f(x) = \frac{x^2 - 5x + 6}{(x+1)(x-2)}$$

- 1. Evaluate $\lim_{x\to 2} f(x)$ and $\lim_{x\to -1} f(x)$
- 2. Find all the vertical asymptotes (VA) of the function
- 3. Find all HA of the function

Q#3 Let
$$f(x) = \frac{|x^2 - 16|}{x - 4}$$

Evaluate $f(4^+)$ and $f(4^-)$

Q# 4 Evaluate the following limits

$$1. \lim_{x\to\infty} (\sqrt{x^2+2}-x)$$

$$2.\lim_{x\to\infty} \frac{\sqrt{3x^2+5}}{2x+3}$$

3.
$$\lim_{x \to -\infty} \frac{\sqrt{3x^2 + 5}}{2x + 3}$$

Q# 5

Let $s(t) = 6t^2 + 1$ $2 \le t \le 2.5$ be the distance function of a moving particle along a straight line.

- 1. Find the average velocity of the particle in the interval
- 2. Find the instantaneous velocity of the particle at t=2

Q # 6 Let
$$f(x) = [\cos x] + [\sin x]$$

- 1. Plot the function
- **2.** Evaluate $f(0), f(0^+), f(0^-)$
- 3. Evaluate $f(\frac{\pi}{2}), f(\frac{\pi^{+}}{2}), f(\frac{\pi^{-}}{2})$

Q # 7 Let f(x) = a[x] + b[-x] Find the values of a, b such that f(x) is continuous at x = 4.

Q #8 Let
$$f(x) = \sqrt{x} - \frac{1}{\sqrt{x}}$$

- 1. Find the equation of the tangent line at x = 4
- 2. Find the equation of the normal line at x = 4

Q # 9 Let C:
$$f(x) = x^3 + 3$$
 and $L: y = 9x - 5$

- 1. Find two points on $\mathcal C$ where the tangent line is parallel to $\mathcal L$
- 2. Find the distance between these points.

Q# 10 Plot a graph of a function in $0 \le x \le 5$ that satisfies the following properties

1.
$$f(0) = 3, f(0^+) = 5, f(0^-) = -\infty$$

2.
$$f(x)$$
 (0 < x < 3) is continuous

3.
$$f(3^-) = \infty$$
, $f(3^+) = -\infty$

4.
$$f(x)$$
 ($3 < x \le 5$) is continuous.