Serial No.:_____ Student Name:_____ Student Number: _____ Instructor: M. Z. Abu-Sbeih Math 102- Q1A Date: 13-7-2010

Problem 1: (5 points) Estimate the area under the graph of $f(x) = 4 - x^2$ from x = -2 to x = 2 using four approximating rectangles and taking the sample point to be the **left endpoint**.

Problem 2: (8 points)

(a) Evaluate the limit
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[\left(\frac{i}{n} \right)^{2} + 2 \right] \left(\frac{4}{n} \right)$$

(b) Write the limit as a definite integral on the interval [0,1] and evaluate it.

Problem 3: (8 points) Evaluate the integrals
(a) $\int \frac{dx}{1+e^{-x}}$

(a)
$$\int \frac{dx}{1+e^{-x}}$$

(b)
$$\int \frac{x^3 + \ln x}{x} \, dx$$

Problem 4: (4 points) If
$$f(x) = \int_{x^2}^1 \frac{t \ln t}{t^2 + 1} dt$$
 find $f'(e)$.

Serial No.:_____ Student Name:_____ Student Number: _____ Instructor: M. Z. Abu-Sbeih Math 102- Q1B Date: 13-7-2010

Problem 1: (5 points) Estimate the area under the graph of $f(x) = 4 - x^2$ from x = -2 to x = 2 using four approximating rectangles and taking the sample point to be the **right endpoint**.

Problem 2: (8 points)

(c) Evaluate the limit
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[\left(\frac{i}{n} \right)^{2} + 1 \right] \left(\frac{4}{n} \right)$$

(d) Write the limit as a definite integral on the interval [0,1] and evaluate it.

Problem 3: (8 points) Evaluate the integrals
(c) $\int \frac{dx}{e^x + e^{-x}}$

(c)
$$\int \frac{dx}{e^x + e^{-x}}$$

(d)
$$\int \frac{x + \ln x}{x \ln x} dx$$

Problem 4: (4 points) If
$$f(x) = \int_{x^2}^{1} \frac{t \sin t}{t^2 + 1} dt$$
 find $f'(0)$.