King Fahd University of Petroleum & Minerals
Department of Mathematics & Statistics
Math 302 Major Exam I
The Summer Semester of 2009-2010 (093)
Time Allowed: 120 Minutes

Name: ___________________________ ID#: __________________
Section/Instructor: _______________ Serial #: _______________

- Mobiles and calculators are not allowed in this exam.
- Write all steps clear.

<table>
<thead>
<tr>
<th>Question #</th>
<th>Marks</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>75</td>
</tr>
</tbody>
</table>
Q:1 Let $S_a = \{(x, y, ax, a^2 - 5a + 6) \mid x, y, a \in \mathbb{R}\}$ be a subset of \mathbb{R}^4.

(a) (3 points) Find all values of a for which S_a is a subspace of \mathbb{R}^4.

(b) (7 points) For each value of a obtained in part (a), find a basis for S_a.
Q:2 (10 points) Find the general solution of the linear system

\[
\begin{align*}
3x - 2y + z &= 6 \\
x + 10y - z &= 2 \\
-3x - 2y + z &= 0
\end{align*}
\]
Q:3 Let \(A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 2 \\ 0 & 0 & 3 \end{bmatrix} \).

(a) (7 points) Find a matrix \(P \) that diagonalizes \(A \). Also write \(P^{-1}AP \).

(b) (5 points) Find an orthogonal matrix \(Q \) that also diagonalizes \(A \).
Q:4 (10 points) Find equation of the tangent plane and normal line to the surface $2x - \cos(xyz) = 2$ at $\left(1, \frac{\pi}{2}, 1\right)$
Q: 5 Let \(\mathbf{F}(x, y, z) = e^{xyz} \mathbf{i} + \ln(xyz) \mathbf{j} + \tan^{-1}(xyz) \mathbf{k} \).

(a) (5 points) Find \(\nabla \cdot \mathbf{F} \)

(b) (6 points) Find \(\nabla \times \mathbf{F} \).
Q:6 (10 points) Evaluate the integral \(\int_C (2x + 3y) \, ds \), where the curve \(C \) is given by \(x = y = \sqrt{z} \) for \(0 \leq y \leq 2 \).
Q:7 (12 points) Let $F(x, y) = 2xy \mathbf{i} + 3x^2 \mathbf{j}$ and C is the boundary of the region determined by the graphs of $x = 0$, $x^2 + y^2 = 1$, $x \geq 0$. Use Greens’ theorem to evaluate $\int_C F \cdot d\mathbf{R}$.