(1) Describe and sketch the surfaces in space defined by the following equations:

\begin{itemize}
 \item (i) \(z = -1 \)
 \item (ii) \(x^2 + z^2 = 3 \)
 \item (iii) \(z = y^2 \)
 \item (iv) \(yz = 1 \)
 \item (v) \(z = -y + 1 \)
\end{itemize}
(2) Let \(\vec{a} = \langle \sqrt{2}, 1, 1 \rangle \) and \(\vec{b} = \langle -\sqrt{2}, 4, -1 \rangle \) be two vectors in \(\mathbb{R}^3 \). (10pts)

- i) Find the scalar projection and vector projection of \(\vec{b} \) onto \(\vec{a} \).
- ii) Find the angle between the vectors \(\vec{a} \) and \(\vec{a} + \vec{b} \).
- iii) If \(\vec{r} = \langle x, y, z \rangle \), show that the vector equation \((\vec{r} - \vec{a}) \cdot (\vec{r} - \vec{b}) = 0 \) represents a sphere.
(3) (a) Find the angle that the vector \(\mathbf{v} = -\sqrt{3}\mathbf{j} + \mathbf{k} \) makes with the positive \(y \)-axis.

(b) Find all unit vectors parallel to the \(xz \)-plane that are perpendicular to the vector \(2\mathbf{i} - 3\mathbf{j} - \mathbf{k} \).

(c) If a vector has direction angles \(\alpha = \pi/4 \) and \(\beta = \pi/3 \), find the third direction angle \(\gamma \).
(4) (a) Let \(\vec{a} = \overrightarrow{OP} \), where \(P \) is the point \((2, 2, \sqrt{2})\). Compute the vectors \(\vec{b} \) and \(\vec{c} \).

(3pts)

(b) Let \(\vec{a}, \vec{b} \) and \(\vec{c} \) be three vectors in the plane \(3x - 5y + 6z = 7 \). Compute

\[
(-\vec{a} + 4\vec{b} - 7\vec{c}).(-3\vec{i} + 5\vec{j} - 6\vec{k}).
\]

(7pts)
(5) Given the points $A(1, 0, 1)$, $B(2, 3, 0)$, $C(-1, 1, 4)$, and $D(0, 3, 2)$, find the volume of the parallelepiped with adjacent edges AB, AC, and AD. (10pts)