MATH 201 2010/11. Calculus III.
Quiz 2 Questions §10.1 -- §12.4

Important note: show your workings out for full marks.

1. Show that the equation represents a sphere and find its center and radius:
 \[x^2 + y^2 + z^2 = 4x - 2y + 6z \]

2. Determine whether the following pairs of vectors are orthogonal, parallel or neither:
 (a) \(\mathbf{a} = (-5,3,7) \) and \(\mathbf{b} = (6,-8,2) \);
 (b) \(\mathbf{a} = (4,5,-1) \) and \(\mathbf{b} = (-3,2,-2) \); and
 (c) \(\mathbf{a} = 2i - 6j + 4k \) and \(\mathbf{b} = 3i - 9j + 6k \).

3. Find the volume of the parallelepiped with adjacent edges, \(\mathbf{AB} \), \(\mathbf{AC} \), and \(\mathbf{AD} \) where \(A(2,01), B(4,1,0), C(3,-1,1), D(2,-2,2) \).

4. Find \(\frac{dy}{dx} \) and \(\frac{d^2y}{dx^2} \) at the point \(s=1/2 \) for the curve given by \(x = 2s^3, \quad y = 6/s \).

5. Find the area of the region between the two polar curves \(r = 2 \sin 2\theta \), and \(r = 1 \), in the range \(0 \leq \theta \leq \pi/2 \).

6. If \(\mathbf{a} = (1,2,3) \) and \(\mathbf{b} = (1,0,1) \), show that, (a) \(\mathbf{u} = \mathbf{b} - \text{Proj}_a \mathbf{b} \) is orthogonal to \(\mathbf{a} \); (b) \(\mathbf{a} \) is parallel to \(\text{Proj}_a \mathbf{b} \).

7. Find the Cartesian (rectangular) equations of the curve given by the parametric equations \(x(t) = \cos t, \quad y(t) = \cos 2t - 1; \quad -\pi \leq t \leq \pi \).