Exercise 1 (20 points)
Use the augmented matrix to find all values of \(r \) for which the system (S) has:

\[\begin{align*}
 x + 2y + z &= 4 \\
 x - 2y + r^2z &= r \\
 x + 6y + z &= 7 \\
\end{align*} \]

a/ No solution b/ a unique solution c/ infinitely many solutions
Exercise 2 (20 points)
1-Which one of the following transformation is linear?
(i) $L_1 : \mathbb{R}^3 \rightarrow \mathbb{R}^3, L_1(a,b,c) = (a,b,c+1)$,
(ii) $L_2 : \mathbb{R}^3 \rightarrow \mathbb{R}^3, L_2(a,b,c) = (a-b, b-c, c-a)$
2-Find $\text{Ker}L_2$, and $\dim \text{Ker}L_2$
3-Find $\text{Range}L_2$ and $\dim \text{Range}L_2$
Exercise 3 (20 points)
Let P_3 be the vector space of all real polynomials of degree ≤ 3, P_2 be the vector space of all real polynomials of degree ≤ 2 and $D : P_3 \rightarrow P_2, D(f) = f'$ be the differential operator. Let $S = \{1, t, t^2, t^3\}$ and $T = \{1, t, t^2\}$ be the standard bases of P_3 and P_2 respectively. Set $S' = \{2, 1 - t, -t^2, t^2 - t^3\}$ and $T' = \{1, 1 - t, 1 - t^2\}$.

1- Find the transition matrix P from S' to S.
2- Find the transition matrix Q from T' to T.
3- Find the matrix representing D with respect to S' and T'.
Exercise 4 (20 points)

Use Gram-Schmidt process to transform the basis \(S = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \) to an orthonormal basis.
Exercise 5 (20 points)
Let V and W be two vector spaces over the same field k and suppose that $\dim V = \dim W$ is finite.
1-Prove that V and W are isomorphic.
2-Deduce that every real vector space V of dimension n is isomorphic to \mathbb{R}^n.
Exercise 6 (20 points)
1-Use the properties of determinant to set-up a formula for the area of the rectangle (Δ) with vertices (a_1, b_1), (a_2, b_2) and (a_3, b_3).
2-Application: Find the area of the triangle with vertices (1,2), (2,4) and (3,1).
Exercise 7 (20 points)

Let A be an $n \times n$ matrix with characteristic polynomial $f = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$ and suppose that $a_0 \neq 0$.

1- Prove that A is invertible and find A^{-1}. (Hint, use Cayley-Hamilton Theorem).

2- Application: Find the 3×3 matrix A such that $f = -X^3 + 2X^2 - 1$ and $2A - A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$
Exercise 8 (20 points)

Let \(A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \).

1. Prove that \(A \) is diagonalizable.

2. Find an orthogonal matrix \(P \) such that \(P^{-1}AP = D \) is diagonal.
Exercise 9 (20 points)

Let A be a real symmetric matrix.

1-Prove that the eigenvalues of A are all real numbers.
2-Prove that eigenvectors associated to distinct eigenvalues are orthogonal.
Exercise 10 (20 points)
Let \(g(x, y, z) = x^2 + y^2 + z^2 - 2xy - 2xz + 2yz \) be a quadratic form of \(\mathbb{R}^3 \).
1- Find the canonical quadratic form \(h \) that is equivalent to \(g \).
2- Find the rank and the signature of \(g \).