Exercise 1. Let $U = (1, 1, 0)$ and $V = (1, 1, \sqrt{2})$.

(1) Evaluate the angle between the two vectors U and V.
(2) Evaluate the area of the parallelogram defined by the vectors U and V.

Exercise 2. Let $U = (-1, 2, 1)$, $V = (2, 1, 1)$ and

$$S = \{W = (x, y, z) \in \mathbb{R}^3 \mid U \cdot W = 0 \text{ and } V \cdot W = 0\}.$$

(1) Show that S is a subspace of \mathbb{R}^3.
(2) Find a basis of S.
SOLUTIONS

Ex. 1. The angle between two nonzero vectors \(U, V \) is the real number \(\theta \in [0, \pi] \) such that

\[
\cos(\theta) = \frac{U \cdot V}{||U|| \times ||V||}.
\]

The area of the parallelogram defined by the two vectors is

\[
\mathcal{A}(U, V) = ||U|| \times ||V|| \sin(\theta) \text{ (unit}^2)\]

In our case, \(\cos(\theta) = \frac{1}{\sqrt{2}} \). Hence \(\theta = \frac{\pi}{4} \) and consequently,

\[
\mathcal{A}(U, V) = \sqrt{2} \times \sqrt{4} \times \frac{1}{\sqrt{2}} = 2 \text{ (unit}^2).\]

\[\Box\]

Ex. 2.

1. \(-\) As \(U \cdot 0_{x^3} = V \cdot 0_{x^3} = 0 \), we get \(0_{x^3} \in S \).
 \(-\) Let \(W_1, W_2 \) be two elements of \(S \). Then

\[
U \cdot W_1 = V \cdot W_1 = U \cdot W_2 = V \cdot W_2 = 0.
\]

This leads to

\[
U \cdot (W_1 + W_2) = U \cdot W_1 + U \cdot W_2 = 0 + 0 = 0,
\]

and

\[
V \cdot (W_1 + W_2) = V \cdot W_1 + V \cdot W_2 = 0 + 0 = 0.
\]

It follows that \(W_1 + W_2 \in S \).
 \(-\) Now, let \(W \in S \) and \(\alpha \in \mathbb{R} \). Then

\[
U \cdot (\alpha W) = \alpha U \cdot W = \alpha \times 0 = 0,
\]

and

\[
V \cdot (\alpha W) = \alpha V \cdot W = \alpha \times 0 = 0.
\]

This implies that \(\alpha W \in S \).

Therefore, \(S \) is a subspace of \(\mathbb{R}^3 \).

2. Let \(W = (x, y, z) \in \mathbb{R}^3 \). Then \(W \in S \) if and only if the following equations are satisfied

\[
-x + 2y - z = 0 \text{ and } 2x + y + z = 0.
\]

This gives \(y = 3x \) and \(z = -5x \). Thus, \(W = (x, y, z) = (x, 3x, -5x) = x(1, 3, -5) \).

We conclude that \(B = \{(1, 3, -5)\} \) is a basis of \(S \). \[\Box\]