1. Let X and Y be two normed linear spaces with $\dim X < +\infty$. Show that any linear operator $A : D(A) = X \to Y$ is bounded and there exists $x_0 \neq 0$ in X such that $\|Ax_0\| = \|A\| \|x_0\|$.

2. Let X and Y be two Banach spaces and M a subset of $L(X, Y)$ such that $\sup_{A \in M} \|Ax\| < +\infty$ for every $x \in X$. Show that $\sup_{A \in M} \|A\| < +\infty$.

3. Consider the subspace $M = \{(x, 0) : x \in \mathbb{R}\}$ of \mathbb{R}^2 and the transformations $P_i : \mathbb{R}^2 \to M$, $i = 1, 2$, defined by $P_1(x, y) = (x, 0)$ and $P_2(x, y) = (x + \alpha y, 0)$ where $(x, y) \in \mathbb{R}^2$ and α is a scalar. Show that P_1 and P_2 are projections and $R(P_1) = R(P_2) = M$ despite the fact that $P_1 \neq P_2$.

4. Let (X, d) be a complete metric space and let $f : X \to X$ be a contraction mapping with a constant k. If $x^* \in X$ is the fixed point of f, then show that

$$d(x^*, x) \leq \frac{1}{1-k} d(f(x), x) \quad \text{for any } x \in X,$$

and x^* is a fixed point of the function f^n defined as $f^n = f \circ f^{n-1}$, $f^1 = f$, n is a positive integer.

5. Let $X = C^1([a, b] ; \mathbb{R})$. Define a function N on X by

$$N(f) = \sqrt{f(a)^2 + \int_a^b f'(x)^2 dx}.$$

Show that this function defines a norm on X.

6. Let U be a normed space, $f \in U'$ and $u_0 \notin N(f)$. Show that there is a vector $w \in N(f)$ such that

$$\|w - u_0\| = d(u_0, N(f))$$

if and only if there exists a vector $u \in U$ such that $\|u\| = 1$ and $f(u) = \|f\|$.
