Math 302 Exam I

Semester (102) March 10, 2011 Time: 12:30 - 2:00 pm

Name: ...

I.D: Section:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
</tr>
</tbody>
</table>
Problem 1. Let \(S = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 x_2 = x_3 x_4\} \). Check the three conditions of subspace for \(S \) and conclude whether \(S \) is a subspace or not.
Problem 2. Determine whether the vectors \(V_1 = (1, -1, 2, 0) \), \(V_2 = (2, 1, 0, 3) \), \(V_3 = (1, -1, 2, 1) \) are linearly independent or dependent in \(\mathbb{R}^4 \).
Problem 3. Let $a, b \in \mathbb{R}$. Consider the following system of linear equations

\[
\begin{align*}
 (\star) \quad \begin{cases}
 x - 2y + 3z &= 4 \\
 2x - 3y + az &= 5 \\
 3x - 4y + 5z &= b
 \end{cases}
\end{align*}
\]

Let A be the matrix of coefficients of the system (\star) and $B = \begin{pmatrix} 4 \\ 5 \\ b \end{pmatrix}$.

(a) Show that the augmented matrix $[A : B]$ is row-equivalent to

\[
\begin{pmatrix}
 1 & 0 & 2a - 9 & : & -2 \\
 0 & 1 & a - 6 & : & -3 \\
 0 & 0 & -2a + 8 & : & b - 6
\end{pmatrix}
\]

(b) Show that for $a = 3$, the system (\star) is consistent for any value of b.

(c) Suppose that $a = 4$. Find all values of b for which the system (\star) is inconsistent (has no solution).
Problem 4. Let

\[A = \begin{pmatrix} 1 & 0 & \alpha \\ 3 & -1 & 0 \\ -2 & 0 & 1 \end{pmatrix}, \]

where \(\alpha \) is a real number.

(a) Find the eigenvalues of \(A \).
(b) Find all values of \(\alpha \) for which \(A \) has repeated eigenvalues.
(c) For the case of positive repeated eigenvalues, find the corresponding eigenvectors.