1. (a) Every metric on a vector space is not necessarily a norm. Justify this statement by means of a suitable example.

(b) Define a contraction on a metric space. Let $T : [1, \infty) \to [1, \infty)$ be given by $Tx = \frac{25}{26} \left(x + \frac{1}{x} \right)$. Use Banach fixed point theorem to find a unique fixed point of T.

2. (a) Let p be a fixed integer such that $1 \leq p \leq \infty$. Define $l_p = \left\{ x = \{x_n\} : \sum_{n=1}^{\infty} |x_n|^p < \infty \right\}$. Consider l_p under its usual sum norm and show that the dual of l_p is l_q where $\frac{1}{p} + \frac{1}{q} = 1$.

(b) Prove that a closed linear mapping of a Banach space E into a Banach space F is continuous.

3. (a) Let $\{\alpha_n\}$ be a sequence of reals. Define a sequence of functionals on l_1 (under its usual norm) by $f_n(x) = \sum_{k=1}^{n} \alpha_k \xi_k$, $x = \{f_k\} \in l_1$. Show that each f_n is linear and continuous and $\|f_n\| = \max_{1 \leq k \leq n} |\alpha_k|$. Assume that $\sum_{k=1}^{\infty} \alpha_k \xi_k$ is convergent for every $\{\xi_k\} \in l_1$. Use uniform boundedness principle, to show that $\{\alpha_n\}$ is bounded.

(b) Let $x \neq 0$ be any element of a normed space X. Prove that there exists a bounded linear functional f on X such that $\|f\| = 1$ and $f(x) = \|x\|$. Hence show that $\|x\| = \sup_{0 \neq f \in X^*} \frac{|f(x)|}{\|f\|}$ where X^* denotes dual of X.

4. (a) Let f be a continuous linear functional on a Hilbert space H. Prove that there exists a unique $z \in H$ such that $f(x) = \langle x, z \rangle$ for all $x \in H$ and $\|f\| = \|z\|$.

(b) Let M be a nonempty subset of a Hilbert space H. If the span of M is dense in H, then show that $M^\perp = \{0\}$.

5. (a) Let E be a normed space and suppose that E^* is separable. Then prove that E is separable.
(b) Let \(\{x_n\} \) be a sequence in a normed space \(X \). If \(\{x_n\} \) converges weakly to \(x \in X \), then show that:

(i) the sequence \(\{\|x_n\|\} \) is bounded.

(ii) for all \(f \in M^\ast \), we have \(f(x_n) \to f(x) \) where \(M^\ast \) is a strongly dense subset of \(X^\ast \).

6. (a) Prove that a bounded sequence in a reflexive Banach space contains a weakly convergent subsequence.

(b) Let \(A \) be a complex Banach algebra with identity \(e \). Then prove that the set of all invertible elements of \(A \) is an open set. If \(x \in A \), then is it true that the spectrum of \(x, \sigma(x) \), is an empty set?