Homework # 3 Due: April 1st 2012

Let R_l be the set of real numbers with the lower limit topology, R_u the set of real numbers with the usual topology, and R_d is the set of real numbers with the discrete topology.

- 1. Show that $R \times R$ with the dictionary order topology is homeomorphic to $R_d \times R_u$.
- 2. Describe the subspace topology on a line L in the plane topologized as $R_l \times R_u$ and also as $R_l \times R_l$.
- 3. Let $A \subseteq \overline{X}$, $f: A \to Y$ be a continuous function and Y be Housdorff space. Show that if f may be extended to a continuous function $g: \overline{A} \to Y$ then g unique.
- 4. Show that $R \times R$ in the dictionary order topology is matrizable.
- 5. Let R^{∞} denotes the subset of R^{w} (countable product) consisting of sequences $(x_{1}, x_{2}, ..., x_{n}, ...)$ which are eventually zero i.e., $x_{i} \neq 0$ for at most finitely many i. What is \overline{R}^{∞} in the box and product topologies on R^{w} ?
- 6. Consider R^{w} with the box and product topologies.
 - (a) In which topology (topologies) are $f, g, h: R \to R^w$ continuous?

$$f(t) = (t, 2t, 3t, ...)$$

$$g(t) = (t, t, t, ...)$$

$$h(t) = \left(t, \frac{1}{2}t, \frac{1}{3}t, ...\right)$$

(b) In which do the following sequences converge?

$$w_{1} = (1,1,1,1,...) x_{1} = (1,1,1,1,...)$$

$$w_{2} = (0,2,2,2,...) x_{2} = \left(0,\frac{1}{2},\frac{1}{2},\frac{1}{2},...\right)$$

$$w_{3} = (0,0,3,3,...) x_{3} = \left(0,0,\frac{1}{3},\frac{1}{3},...\right)$$

$$\vdots \vdots$$

$$\langle w_{n} \rangle \langle w_{n} \rangle$$

$$y_{1} = (1,0,0,0,...) z_{1} = (1,1,0,0,...)$$

$$y_{2} = (\frac{1}{2}, \frac{1}{2}, 0, 0, ...) z_{2} = (\frac{1}{2}, \frac{1}{2}, 0, 0...)$$

$$y_{3} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, ...) z_{3} = (\frac{1}{3}, \frac{1}{3}, 0, 0, ...)$$

$$\vdots \vdots$$

$$\langle y_{n} \rangle \langle z_{n} \rangle$$

- 7. Let $f_n:[0,1] \to R$ be defined by $f_n(x) = x^n$ for each positive integer. Show that $< f_n(x) >$ Converges for each x in [0,1] but $< f_n >$ does not converge uniformly.
- 8. Let X be a topological space and Y be a metric space. Let $f_n: X \to Y$ be a sequence of continuous functions and let $(x_n) \to X$ in X. If $(x_n) \to Y$ uniformly, show that $(x_n) \to Y$ be a sequence of uniformly, show that
- 9. (a) Is R_l connected?
 - (c) Show that R^w is not connected in the box topology.
 - (d) Show that R^n and R are not homeomorphic if n > 1.
- **10.** Cantor's middle third set *C*.

$$\begin{split} A_0 &= [0,1], \ A_1 = A_0 - \left(\frac{1}{2}, \frac{2}{3}\right), A_2 = A_1 - \left[\left(\frac{1}{9}, \frac{2}{9}\right) \cup \left(\frac{7}{9}, \frac{8}{9}\right)\right] \\ A_n &= A_{n-1} - \bigcup_{k=0}^{n-1} \left(\frac{1+3^k}{3^n}, \frac{2+3^k}{3^n}\right) \end{split}$$

$$C = \bigcap_{n=1}^{\infty} A_n$$
 Is called "the" Cantor set (which is a subspace of $[0,1]$.

- (a) C Is totally disconnected, i.e., a point is the largest connected subset.
- (b) C Is compact
- (c) $A_n = \text{Union of finitely many closed intervals of length } \frac{1}{3^n}$. Show also that their endpoints are also in C.
- (d) Show that every point of C is a limit point of C.
- (e) C is uncountable.