Solve 5 problems (out of 7) from the below list.

(1) Let $P = (p)$ be a principal prime ideal of a ring R and $J = \bigcap P^n$. Prove the following:
 (a) Q is a prime ideal of R strictly contained in $P \implies Q \subset J$.
 (b) $p \notin Z(R) \implies J = pJ$.
 (c) $p \notin Z(R) \implies J \in \text{Spec}(R)$.
 (d) R is an integral domain and J is finitely generated $\implies J = 0$ and $ht(P) = 1$.
 (e) J is finitely generated $\implies ht(P) \leq 1$.

(2) Let R be a ring and $u \in U(R)$. Prove that $R[u] \cap R[u^{-1}]$ is integral over R.

(3) (The homogeneous Nullstellensatz) Let K be a field and $R = K[x_1, \ldots, x_n]$. An ideal I of R is homogeneous if $f \in I \implies$ all the homogenous constituents of $f \in I$. A variety $V (\subseteq K^n)$ is a cone if $(a_1, \ldots, a_n) \in V \implies (ta_1, \ldots, tan) \in V$ for all $t \in K$.
 (a) Prove that if I is homogeneous, then $V(I)$ is a cone; where $V(I)$ denotes the variety consisting of all points of K^n where all polynomials in I vanish.
 (b) Prove that if V is a cone and K is infinite, then $J(V)$ is homogeneous; where $J(V)$ denotes the ideal of polynomials vanishing on V.
 (c) Prove that if K is algebraically closed, then the radical of a homogeneous ideal is homogeneous.

(4) Let R be an integral domain with quotient field K. Prove the following:
 (a) $S^{-1}R$ integral over $R \implies R = S^{-1}R$ (for any given multiplicative subset S of R).
 (b) Every ring between R and K is integrally closed $\implies R$ is Prüfer.
 (c) Every ring between R and K is a localization $\implies R$ is Prüfer.

(5) Let R be an integral domain, K its quotient field, and R' its integral closure. Let T be a ring between R and K, and D the conductor of T relative to R, i.e., $D = (R :_RT)$. Prove:
 (a) R is Noetherian and $D \neq 0 \implies T$ is a finitely generated R-module
 (b) $D \not\subset P \in \text{Spec}(R)$ and $Q \in \text{Spec}(T)$ with $Q \cap R = P \implies R_P = T_Q$.
 (c) T is a finitely generated R-module and $P \in \text{Spec}(R)$ with $R_P = T_P \implies D \not\subset P$.
 (d) If R' is a f.g. R-module and $P \in \text{Spec}(R)$, then: R_P is integrally closed $\iff (R :_RR') \not\subset P$.
(6) Let R be an integral domain with quotient field K. Suppose that every ring between R and K is Noetherian. Prove that the Krull dimension of R is at most 1. (This is the converse of Theorem 93.)

(7) Let an integral domain $R = \bigcap_i R_i$ be a locally finite intersection of one-dimensional local domains lying between R and its quotient field. For each i, let M_i denote the maximal ideal of R_i, and let $P_i = M_i \cap R$.

(a) Prove that any non-zero element of R lies in only a finite number of minimal prime ideals of R.

(b) Assume $ht(P_i) = 1$ for each i. Prove that for any $0 \neq a \in R$, we have

$$Z(R/(a)) = P_1 \cup \ldots \cup P_n$$

where P_1, \ldots, P_n are the minimal prime ideals containing a.

(c) Prove that every prime ideal of grade 1 has height 1.

(Part 2 – 30/100)

Solve the following problem.

Let D be an integral domain with quotient field K and E a subset of K.

- Let $\text{Int}(E, D) = \{f \in K[X] \mid f(E) \subseteq D\}$ called the ring of D-integer-valued polynomials over E. If $E = D$, we write $\text{Int}(D)$ instead of $\text{Int}(D, D)$.

- The polynomial closure of E in D is the largest subset F of K with $\text{Int}(E, D) = \text{Int}(F, D)$ and is given by $\text{cl}_D(E) = \{x \in K \mid f(x) \in D \text{ for each } f \in \text{Int}(E, D)\}$.

- E is said to be D-fractional if $\exists 0 \neq d \in D$ such that $dE \subseteq D$. So $dX \in \text{Int}(E, D)$.

- E is polynomially dense in D if $\text{Int}(E, D) = \text{Int}(D)$. (e.g., N is polynomially dense in \mathbb{Z}.)

Assume that for some $\Delta \subseteq \text{Spec}(D)$, $D = \bigcap_{p \in \Delta} D_p$ is a locally finite representation of D. Then prove the following:

(a) $\text{Int}(E, D)_p = \text{Int}(E, D_p)$, for each $p \in \Delta$.

(b) $\text{cl}_D(E) = \bigcap_{p \in \Delta} \text{cl}_D(E_p)$.

(c) If $E \subseteq D$, then: E is polynomially dense in $D \iff E$ is polynomially dense in $D_p \forall p \in \Delta$.