1. The continuously compounded annual interest rate r is 0.04. Investor A buys the index at time 0 and sells a 1025 strike call with $T = 0.25$. Investor B writes a 1025 strike put and lends x. The two investors have the same payoff functions. What is x?
 a) 1000
 b) 1007.40
 c) 1014.80
 d) 1025
 e) 1037.40
 Work shown (4 points):

2. You are a producer of gold, and have expenses of 800 per ounce of gold produced. Assume that the cost of all other production-related expenses is negligible, and that you will be able to sell all gold produced at the market price. In 1 year, the market price of gold will be 1 of 3 possible prices, corresponding to the following probability table:

<table>
<thead>
<tr>
<th>Gold Price per ounce in 1-year</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>750</td>
<td>0.2</td>
</tr>
<tr>
<td>850</td>
<td>0.5</td>
</tr>
<tr>
<td>950</td>
<td>0.3</td>
</tr>
</tbody>
</table>

You hedge the price of gold by buying a 1-year put option with an exercise price of 900 per ounce. The option costs 100 per ounce now, and the continuously compounded interest rate is 6%. Which of the following is closest to your expected 1-year profit per ounce of gold produced?
 a) 0
 b) 3
 c) 6
 d) 9
 e) 12
 Work shown (4 points):
1. The continuously compounded annual interest rate \(r \) is 0.04. Investor A buys the index at time 0 and sells a 1025 strike call with \(T = 0.25 \). Investor B writes a 1025 strike put and lends \(x \). The two investors have the same payoff functions. What is \(x \)?
 a) 1000
 b) 1007.40
 c) 1014.80
 d) 1025
 e) 1037.40

 Work shown (4 points):
 Buying the index and selling a call creates a covered call.
 Same payoff function if one write a put for the same exercise price \(K \) and lend the present value of \(K \).
 \[
 \text{Payoff of a covered call} = S_T - \max(0, S_T - K) = S_T - \max(0, S_T - 1025)
 \]
 \[
 \text{Payoff of a written put and lending} = K - \max(0, K - S_T) = K - \max(0, 1025 - S_T)
 \]
 \[
 S_T \cdot \max(0, S_T - 1025) = K \cdot \max(0, 1025 - S_T)
 \]
 \[
 \rightarrow \text{The amount loaned here} \ x = Ke^{-rT} = 1025e^{-0.04 \cdot 0.25} = 1014.80
 \]
 Answer is C

2. You are a producer of gold, and have expenses of 800 per ounce of gold produced. Assume that the cost of all other production-related expenses is negligible, and that you will be able to sell all gold produced at the market price. In 1 year, the market price of gold will be 1 of 3 possible prices, corresponding to the following probability table:

 \[
 \begin{array}{c|c}
 \text{Gold Price per ounce in 1-year} & \text{Probability} \\
 \hline
 750 & 0.2 \\
 850 & 0.5 \\
 950 & 0.3 \\
 \end{array}
 \]

 You hedge the price of gold by buying a 1-year put option with an exercise price of 900 per ounce. The option costs 100 per ounce now, and the continuously compounded interest rate is 6%. Which of the following is closest to your expected 1-year profit per ounce of gold produced?
 a) 0
 b) 3
 c) 6
 d) 9
 e) 12

 Work shown (4 points):
 The cost of the put option is \(100e^{0.06(1)} = 106.18 \).
 The table below shows the put payoff and profit before option cost for each market price.

 \[
 \begin{array}{c|c|c|c}
 \text{Gold Market Price per ounce in 1-year} & 750 & 850 & 950 \\
 \hline
 \text{Probability} & 0.2 & 0.5 & 0.3 \\
 \text{Put payoff} = \max(0, 900 - S_T) & 150 & 50 & 0 \\
 \text{Gold Expense} & 800 & 800 & 800 \\
 \text{Profit before Option premium cost} = S_T + \max(0, 900 - S_T) - \text{Expense} & 100 & 100 & 150 \\
 \end{array}
 \]

 Expected Profit before option cost = 100(0.2) + 100(0.5) + 150(0.3) = 115
 Expected Profit = 115 - 106.18 = 8.82
 Answer is D
Future plans

In addition to these paper-and-pencil quizzes, put Practice exams 1 and 2 into WebCT respondus for online quiz. The paper-and-pencil version will be practice for the paper-and-pencil SOA exam while the WebCT quiz will be practice for SOA FM/2 online exam.